地源热泵空调技术_地源热泵空调技术的基本原理
地源热泵空调技术是一个非常重要的话题,可以从不同的角度进行思考和讨论。我愿意与您分享我的见解和经验。
1.地温空调的原理
2.地源热泵空调系统原理是什么?
3.地源热泵空调应用设计?
4.暖通工程中的地源热泵技术应用探讨?
5.地源热泵及其应用
6.地源热泵的优点?
地温空调的原理
原理是利用地下的恒温功能,让空调循环水与大地进行热交换,吸收地下水热量,用来加热水箱里的水,水箱里的水被加热后作为热源经过风机盘管实现制热功能。一种空气循环式冷暖地温空调技术方案.本方案的空调由置于地下井内的温度置换系统和地上的风机,进出风管道,进出风窗口和电器控制线路组成.井内温度置换系统的下部是多条薄壁金属管组成的下风管和上风管,风机工作后,室内空气由进风口进入工作系统
地温空调属于中央空调,是一种利用地层土壤中能源的中央空调技术,地温空调不仅运行原理独特,而且与一般空调技术相比,地温空调优势众多,地温空调又被称为地源热泵空调系统,是中央空调设备的一种。它由电力驱动,通过深埋于地下的管路系统,与地下相对恒定的温度进行热量交换,冬季把地能中的热量取出来,供给室内采暖;夏季把室内热量取出来,释放到地下水、土壤或地表水中,同时吸收大地的较低温度再排到室内,使房屋得到供冷。
地源热泵空调系统原理是什么?
蔡建新(天津京津塘地热科技开发有限公司)
1 地源热泵原理及其特点
1.1 地源热泵原理
地源热泵的原理与普通热泵原理相同,只是为热泵提供的热源是利用自然界中的水、土壤等能汇集地下热能,太阳能等的自然介质中存储的热源(图1)。
图1 热泵原理图
如果建筑附近有可利用的湖、海或水池,并且水温合适(10~20℃)利用地表水系统是最节能,最经济的。夏季冷凝器吸热后的冷却水经管道进湖、海或水池,利用温度较低的地表来散热;冬季吸收海、湖或池内水的热量,用作热泵的低温热源,经热泵汇集后升温传递给室内采暖。利用地表水的地源热泵系统,最适宜的区域是我国的黄河以南到长江、珠江流域的夏热冬冷地区。
地下水系统一般采用开放的循环系统。地下井水经热泵吸热后(冬季放热)向地下深井中放热(冬季吸热)。地下水系统适用于地下水丰富的地区。地下水的温度常年稳定,基本不受外界气温影响,可以让热泵机组高效运行。
对于地表水和地下水源缺乏以及地下水开采受限制的地区,土壤埋管系统将是最佳选择。将管道埋于地下浅层土壤中,循环水经水管与地下土壤进行热交换,夏季土壤作为热汇吸收热量,冬季作为热源为热泵机组提供热量。水平埋管通常用于浅层埋设,开控技术要求不高,但换热能力相对较小,占地面积大;垂直U型埋管换热能力强,可占相对较小土地面积。北方地区因冬季采暖需热量大,通常需采用垂直埋管方式。
1.2 地源热泵特点
1.2.1 地源热泵是清洁的可再生能源利用技术
地表浅层土壤和水体是一个巨大的太阳集热器,同时地球深部的热能也会通过地表向大气层散失。人类每年消耗的全部能量,只是地表吸收和散发的太阳能和地热能的极小的一部分。地表能量被利用后,可由太阳能和地球深部传导上来的热量很快平衡,不会对自然界的能量系统造成不良影响。因此浅层地表能量是一个取之不尽的可再生清洁能源库。
1.2.2 是高效节能的技术
热泵本身的制热效率就比较高。因为热泵产生的热主要不是因燃烧或电加热而直接产生的热量,而是从低温热源中转移过来的热量。我们可以通过一次能源利用率来说明热泵的高效率。
能源利用系数E为装置的制热量与消耗的初级能量的比值。
假设热泵消耗的能量是电,火力发电的效率为0.35,输配电的效率是0.95则热泵E值为:
E=0.35?0.95?COP(COP为热泵的制热性系数)
表1 热泵供热时与传统的供热方式E值相当的COP值
现在高效热泵的COP都能达到3.5~4以上,因此,E=0.35×0.95×4=1.33。由此可以看出,热泵在利用一次能源(燃煤)的总体效率上,比效率最高的热电联产的效率还要高。
此外地源热泵的土壤换热器、地下水、地表水作为热源或热汇,冬季在制热运行时,地下水温比环境温度高,使水源热泵的蒸发温度,比其他类型比如风冷热泵的蒸发温度大大提高,且没有化霜操作,所以能效比提高很多,至少在40%以上;夏季制冷时由于地下水,地表水温度比环境气温低,冷凝压力降低,压缩机输入功率减小,使制冷性能比风冷或冷却塔式制冷机组有较大提高。大量测试数据表明,由此导致的机组效率提高,节能20%以上。风冷热泵效率低与地源热泵相比差距大。最节能的风冷空调能耗比也只有2.8。而地源热泵夏季空调时的最低能耗比也在4以上。
1.2.3 环境保护
地源热泵抽取地表水或地下水,并保证100%地下水回灌,甚至不抽取地下水(土壤换热器),对环境不产生破坏作用。热泵以电为驱动力,运行时不直接产生对环境的有害污染,而大规模火力发电则已有成熟的技术降低或治理污染物排放,(如果是水电或核电污染更低)。因此地源热泵系统具有相当好的环境保护效果。
1.2.4 一机多用运行稳定可靠
地源热泵系统可供暖、制冷和提供生活热水,对于同时需求供暖、供冷的建筑,地源热泵一套系统就可同时解决,节省了建筑的配套建设费用和配套设施占用面积。
另外地表水,地下水和浅层地温的变化范围远小于环境气温的变化范围,使地源热泵全年运行稳定,再配合热泵系统自动化程度高,保证了地源热泵采暖、空调系统比传统的采暖、空调系统具有更高的安全性。
1.2.5 应用市场广泛,适用性强
(1)我国绝大多数地域属于夏热冬冷的地区,对建筑采暖用热和空调用冷均可统一于地源热泵系统,尤其对于办公或商务建筑,基本都要求集中空调空调系统。采用地源热泵既解决了采暖又解决了空调,一举两得。
(2)建筑能耗所占能源消耗比例越来越大,发达国家比例达到40%~45%,我国已达到35%。而建筑能耗可以利用温度较低的低品质能量,因此将地源热泵系统在建筑采暖空调领域利用最具经济性、合理性。
2 工程应用案例
几年来,天津京津塘地热科技开发有限公司设计、施工了不少地源热泵空调项目。下面简单给大家介绍一下。
2.1 天津开发区海滨大道发展有限公司办公楼(2002年)
原始设计参数:建筑面积:2400m2;设计热负荷:189kW;设计冷负荷:236kW。
土壤换热器:设计孔深;100m;设计孔数:40。热泵机组:西亚特LWP900 1台;制冷:254kW;制热:339kW。
海滨大道有限公司机房
表2
2.2 中国华能集团小汤山培训中心(2005年)
中国华能集团小汤山培训中心原建筑面积10000m2;原采暖系统为地热井;原空调系统为冷却塔中央空调。新增加建筑面积:20000m2。原有地热井一眼,地热井的具体参数如下:地热井温度:65 ℃;最大水量为:80m3/h;原排水温度:40 ℃;最大热量:2326kW;北京地热水资源费:3元/m3。
因为如果地热井故障,会导致建筑停止供暖8~24小时。所以鉴于采暖安全性和经济性考虑,决定增加地源热泵作为新建筑的中央空调系统,和地热井的热源互为备用。并且可以考虑利用地热井采暖的成本如果太高,可以改为部分利用或全部利用地源热泵。
设计孔深;150m;设计孔数:200;热泵机组:克莱门特热泵2台PSRHH3002;制冷:1092kW,制热:1280kW。
2.3 塘沽凯华商业广场(2005年)
建筑面积4000m2,设计热负荷:240kW,设计冷负荷:320kW。土壤换热器:设计孔深为100m,设计孔数26个,桩埋管数量:3670m。热泵机组:西亚特LWP1200 1台,制冷343kW,制热452kW。
3 设计和工程中存在的问题
(1)关于地下水源开采—回灌和土壤换热器的比较:近几年来地源热泵的发展主要形式是地下水源开采—回灌形式的水源热泵系统。这种形式面临的最大问题是回灌问题。华北、华东地区的地下水位下降,地面沉降问题一直很严重,像天津、上海,多年来面临严重的地面沉降问题,天津有专门的地面沉降办公室,在利用向地下回灌来控制地面沉降的技术已经搞了很多年,积累了很多经验教训,也知道这种地层回灌难度有多大。天津水务部门一直没有开放对利用地下水源用作热泵低温热源或热汇的控制。
在天津地区地下咸水层浅,开凿竖井埋管时会连通咸淡水层,为防止水层连通,要采取必要的措施。并且天津市水利部门加强了对此工作的管理,实施行政许可管理。
采用竖直埋管的土壤换热器形式,不用开采和回灌地下水,没有破坏自然环境的担忧。另外的优点是系统运行更加稳定、安全,没有需要更新和维修潜水泵的烦恼。
(2)冬季避免采用防冻液介质。很多资料中介绍了防冻液的种类、性能等。但我认为在我国华北及以南区域,因为地下温度不是很低,只要设计足够的土壤换热器数量,可以在使用水作为介质的情况下满足需要。尽量不使用防冻液,避免使用不慎造成环境问题和因温度太低降低热泵效率。
(3)系统的管材质量必须保证合格,只能采用PE或PB管材。土壤换热器系统设计要保证水系统平衡,避免采用室外阀门调节的方式。
(4)关于竖直埋管埋设单U型或双U型管的问题,但从工程实践中看,我认为单U型管方式优于双U型管方式。该问题讨论比较复杂,要从土壤换热器的总体能量容量考虑。土壤换热器的总体能量容量还涉及到换热器的布局形状等问题。希望有机会再专门讨论该问题。
参考资料
[1]殷平.地源热泵在中国.现代空调.2001
[2]汪集旸,马伟斌,龚宇烈编.可再生能源丛书《地热利用技术》.北京:化学工业出版社
[3]付祥钊主编.夏热冬冷地区建筑节能技术.北京:中国建筑工业出版社
[4]徐伟等译.地源热泵工程技术指南.北京:中国建筑工业出版社
地源热泵空调应用设计?
01
电冰箱
地源热泵的工作原理与家用电冰箱相同,通过制冷在蒸发器、压缩机、冷疑器和膨胀阀等部件中气相变化的循环,将低温物体的热量传递到高温物体中去。
地源热泵是利用浅层地能进行供热制冷的新型能源利用技术,是热泵的一种,热泵是利用卡诺循环和逆卡诺循环原理转移冷量和热量的设备。地源热泵通常是指能转移地下土壤中热量或者冷量到所需要的地方。
通常热泵都是用来做为空调制冷或者采暖用的。地源热泵还利用了地下土壤巨大的蓄热蓄冷能力,冬季地源把热量从地下土壤中转移到建筑物内,夏季再把地下的冷量转移到建筑物内,一个年度形成一个冷热循环。
地源热泵特点:
1、高效节能,稳定可靠。
2一机多用,地源热泵系统可供暖、制冷,还可供生活热水。
3、维护费用低。
4、使用寿命长,地源热泵的地下埋管选用聚乙烯和聚丙烯塑料管,寿命可达50年。
5、节省空间,没有冷却塔、锅炉房和其它设备,省去了锅炉房,冷却塔占用的宝贵面积,产生附加经济效益,并改善了环境外部形象。
暖通工程中的地源热泵技术应用探讨?
地源热泵空调应用设计是非常重要的,设计的好坏直接影响到之后使用的效果,每个细节的处理方式都会带来不同结果。中达咨询就地源热泵空调应用设计为大家介绍一下。
一、引言
随着经济的发展和人民生活水平的提高,公共建筑和住宅的供热和空调已成为普遍的需求。在满足人们健康、舒适要求的前提下,合理利用自然资源,保护环境,减少常规能源消耗,已成为暖通空调行业需要面对的一个重要问题。地源热泵空调系统通过吸收大地(包括土壤、井水、湖泊等)的冷热量,冬季从大地吸收热量,夏季从大地吸收冷量,再由热泵机组向建筑物供冷供热而实现节能,是一种利用可再生能源的高效节能、无污染的既可供暖又可制冷的新型空调系统。
二、地源热泵空调系统
地源热泵(Ground source heat pump)是一种利用地下浅层地热资源既可供热又可制冷的高效节能空调系统。系统通过地源热泵将环境中的热能提取出来对建筑物供暖或者将建筑物中的热能释放到环境中去而实现对建筑物的制冷,夏季可以将富余的热能存于地层中以备冬用;冬季可以将富余的冷能贮存于地层以备夏用。这样,通过利用地层自身的特点实现对建筑物、环境的能量交换,其原理(如图1)。
三、地源热泵优点及应用现状
地源热泵由于其技术上的优势,推广这种技术有明显的节能和环保效益,主要具有以下优点:(1)地源热泵系统比传统空调系统运行效率要高约40%,节能、运行费用低。(2)地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置。(3)开发推广地源热泵空调技术可彻底废除中小型燃煤锅炉房,无燃烧、无废弃物,没有任何污染,不会影响环境质量。(4)地表浅层地热资源量大面广,无处不在,它是一种清洁的可再生能源。
随着地源热泵技术的进步,到2000年底,美国有超过40万台地源热泵系统在家庭、学校和商业建筑中使用,每年约提供8000~11000Gwh的终端能量。我国地源热泵空调系统的设计,主要包括两大部分:一是建筑物内的水环路空调系统的设计;二是地源热泵空调系统的地下部分的设计,即地下耦合热泵系统的地下热交换器、地表水热泵系统的地表水热交换器、地下水热泵系统的水井系统的设计。地下耦合热泵系统最早应用在1989年10月投入运行的上海闵行开发区办公楼(4305m2,冷负荷4532kW,热负荷231kW),其技术和设备均由美国提供,使用情况良好。目前在我国来说,技术上比较成熟、利用可行性较大、实施的工程项目较多的还是地下水热泵系统。目前国内生产水源热泵机组的厂家也已达到二、三十家,因为国内还没有颁布水源热泵机组的生产技术标准,国内厂家生产的产品质量差别较大,从有些厂家的产品样本来看,技术参数不完整、不准确。
四、地源热泵空调系统设计
1.地源热泵系统分类。地源热泵系统按其循环形式可分为:开式循环系统、闭式循环系统、混合循环系统。(1)开式循环系统。开式循环系统是其管道中的水来自湖泊、河流或者竖井之中的水源,在以与闭式循环相同的方式与建筑物交换热量之后,水流回到原来的地方或者排放到其它的合适地点。(2)闭式循环系统。封闭循环系统是指冷(热)源侧的循环水在机组室外换热器与地源换热器间形成封闭循环。管道可以通过垂直井埋入地下150~200英尺深或水平埋入地下4~6英尺处,也可以置池塘的底部。在冬天,管中的流体从地下抽取热量,带入建筑物中,在夏天则是将建筑物内的热能通过管道送入地下储存;所用管道为高密度聚乙烯管或其他防腐管道作为输送和地源热交换器材料。闭式循环系统是一种比较稳定可靠的常规循环系统,对地下水、地下环境没有污染,一般设计应优先考虑该循环系统。(3)混合循环系统。混合循环系统的地下换热器一般按热负荷来计算,夏天所需的额外的冷负荷由常规的冷却塔来提供。对于地下设计热交换空间不够充分,或垂直埋管困难等地下特殊情况,可考虑设计混合循环系统。
2.系统设计参数讨论。关于(冷)热源侧水流量,要由最大得热量和最大释热量确定的。埋管中水流速的选取取决于埋管循环流程长度、埋管材料、管径大小、当地地源条件以及机组的特性要求。一般如提高水流速度可适当增加换热系数,强化换热量,减小换热面积和换热管的耗材,但流速太快会增加循环水泵能量消耗,一般可取流速为0.65~1.5m/s。具体可当地条件进行优化分析与设计,其优化设计考虑的参数关系如下。复合能耗N=f(长度LLT、埋管材料Ma、管径D、地源温度Te,地源热指标Ke,机组特性Type)在机组选择上,设定地埋管进水温度,根据测井测出的进出水温差推算出地埋管出水温度,进而确定热泵机组中工质冬季的蒸发温度和冷凝温度。总之,我国幅员辽阔,地处温带,在不同地区气候条件差异很大,其负荷也迥然不同。因此不能照搬国外的技术成果,而要开发适合我国气候特点的技术。
3.机组的设计。地源热泵的形式比较多,其中商用化最为广泛的是蒸汽压缩式热泵。以水-水系统为例,由一个室外机组和多个室内机组组成。该系统可以对每个空调室进行单独调节,满足各个空调室的要求,具有较好的节能效果。变频户式地源热泵空调系统加上独立的新风系统是一很有发展前景的理想的节能舒适型户式中央空调系统,因而其优化设计具有极其重要的价值。传统的制冷系统设计方法是基于经验加实验为主,通常经验设计方法简便易行,对理论知识和实验条件等依赖性相对较小。然而经验设计方法不可避免地具有直接和可靠性低、稳定性差的缺点,只适于产品的初步开发。基于理论预测的优化设计技术可以有效。
最优化方法就是在一切可行方案中选出最优方案的方法。在最优化设计中,表征方案的一切独立变量为设计变量,最优化方法就是研究如何合理地确定这些变量的方法。评价方案优劣的指标决定于该方案所选定的设计变量,即该指标为设计变量的函数-目标函数。在系统优化设计中,设计变量的取值常常受到种种条件的限制,即约束条件。变频户式地源热泵空调系统由变频压缩机、冷凝器、蒸发器、电子膨胀阀、室内机、制冷剂管路和水泵水管路系统组成。根据制冷系统热力学理论,利用参数动态分布、相互关联的方法,建立系统各部件数学模型和运行参数动态方程,组成系统运行参数的方程组,并对该系统进行动态模拟。模拟系统的动态特性,为优化设计提供依据。为满足空调系统的节能、热舒适性及制冷制热好的效果,空调系统的能效比、降(升)温速率和降(升)温幅度要达到指标要求。因而在优化设计时,分别选取能效比、降(升)温速率和降(升)温幅度为目标函数的多目标优化方法。同时考虑满足冷凝器和蒸发器结构、面积范围、迎面风速范围、系统温度和压力变化范围、水和制冷剂流量范围、过冷过热度范围和室内机数量等约束条件的要求,利用优化方法进行对上述目标多目标优化计算,从而达到针对不同地域的地源热泵系统的优化设计的目的。
4.地源热泵地下换热器形式与布设。土壤热交换器是地源泵机组设计的关键。地源热土壤换热器有多种形式,如水平埋管、竖直埋管等,这两种埋管型式各有自身的特点和应用环境。在中国采用竖直埋管更显示出其优越性:节约用地面积,换热性能好,可安装在建筑物基础、道路、绿地、广场、操场等下面而不影响上部的使用功能,甚至可在建筑物桩基中设置埋管,见缝插针充分利用可利用的土地面积。下面就竖直埋管换热器的设计进行简单的探讨。
(1)竖直埋管材料和深度。埋管材料最好采用塑料管,因与金属管相比,塑料管具有耐腐蚀、易加工、传热性能可满足换热要求、价格便宜等优点,可供选用的管材有高密度聚乙烯管(PE管)、铝塑管等。竖直埋管的管径也可有不同选择,如DN20、DN25、DN32、DN50等。竖直埋管可须根据当地地质条件而定,可以从20m~200m。确定深度应综合考虑占地面积、钻孔设备、钻孔成本和工程规模。如果地表土壤层很厚,钻孔费用相对便宜,宜采用较深的竖直埋管,反之,采用浅埋。埋管间距一般以5~6m及以上,要综合考虑当地的地质及土壤的传热情况。
(2)竖直埋管换热器回填、灵敏度。竖直埋管换热器的形成是从地面向下钻孔达到预计深度,将制作好的U型管下入孔中,然后在孔中回填不同材料。在接近地表层处用水平集水管、分水管将所有U型管并联构成地下换热器。根据地质结构不同,回填材料可以选用浇铸混凝土、回填沙石散料或回填土壤等。材料选择要兼顾工程造价、传热性能、施工方便等因素。从实际测试比较浇铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑物桩基一起施工。
(3)竖直埋管换热器中传热的衰减。竖直埋管换热器中流动的循环水的温度是不断变化的。夏季供冷工况进行时,由于蓄热地温提高,机组运行时水温不断上升,停机时水温又有所下降,当建筑物得热达到最大时水温升至最高点。冬季供热工况运行时则相反,由于取热地温下降,当建筑物失热最多时,换热器中水温达到最低点。对于签埋管尤其严重。设计时,首先应设定换热器埋管中循环水最高温度和最低温度。由于埋管换热器的表面结垢等影响,设计时要考虑衰减,设定值应通过经济比较选择最佳状态点。
五、结论
地源热泵作为一种环保节能的空调方式,是一项跨专业、跨学科的综合能源利用技术,需要通过相关专业技术人员的通力协作做好地源热泵机组的设计、安装、运行、维护等各个方面。近十几年来,尤其是近五年来,地源热泵空调系统在北美如美国、加拿大及法国、瑞士、瑞典等国家取得了较快的发展,中国的地源热泵市场也日趋活跃,可以预计,该项技术将会成为21世纪最有效的供热和供冷空调技术。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd
地源热泵及其应用
暖通技术中的地源热泵是一项新技术,随着经济的蓬勃发展,越来越多的人开始关注它,对暖通工程的需求越来越大。因此本文根据其原理及特点进行分析,对地源热泵系统在暖通工程实践中的应用问题提出探讨,进一步推进地源热泵在暖通工程中的应用,从而更有效的提高工程质量。
地源热泵对于暖通工程来时是有着重要意义的新技术,因为暖通工程中的地源热泵技术是可以降低能源的消耗,是一个很好的暖通系统。只有更深入的通过地源热泵技术的原理和特点进行分析,从而才能更好的掌握暖通工程中地源热泵的实际应用。
1地源热泵的技术原理
地源热泵是利用地球表面浅层地热资源作为冷热源,进行能量转换的采暖/制冷空调系统。它不受地域、资源等限制,量大面广、无处不在。这种储存于地表浅层近乎无限的能源,使得地能成为清洁的,可再生能源的一种形式。地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是很好的热源和冷源。这种温度特性使得水源热泵比传统空调系统运行效率要高40%,因此节能和节省运行费用40%左右。另外,地表30 m以下的温度具有较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。
2地源热泵系统形式
1)地表水系统。如果空调建筑附近有河、湖、水池等地表水,可将闭环换热盘管放入河水、湖水、水池中作为地源热泵的室外系统。夏季从热泵冷凝器吸热后的冷却水经密封的管道系统进入湖或池中,利用温度稳定的湖水或池中水散热。冬季吸取湖水或池水的热量并将热量传递给热泵机组的蒸发器。这种方式可保证河水(湖水)的水质不受到任何影响,而且可以大大降低室外换热系统的施工费。
2)地下水系统。另一种室外系统可采用地下水系统,地下水系统一般采用开环系统,包括一定数量的抽水井和回灌井。冷却水经热交换器向地下深井散热(冬季吸热),地下水从取水井中抽取进入热交换器吸热(冬季散热)后由回水井回灌到地下。
3地源热泵的技术特点
地源热泵分为地下水源热泵、地表水源热泵和地埋管地源热泵。地埋管地源热泵系统为闭式系统,通过循环液(水或以水为主要成分的防冻液)在封闭的地下埋管中流动,实现系统与大地间的传热。
1、节能:地源热泵制冷时比传统中央空调系统运行效率要提高30%-50%;供暖时要比热力管网集中供热或燃油燃气供热系统降低20%~60%。
2、减排:以清洁能源代替燃煤供暖,系统无燃烧设备不产生CO,CO2等温室气体。房间内采用水作为循环介质,没有氟利昂的泄漏。
3、环保:没有燃烧过程,不存在污染物排放问题,属绿色环保技术。
4地源热泵系统在暖通工程实践中的应用
4.1钻孔施工
(1)钻孔前应勘测现场,做好和其他专业(如土建、给排水、消防、电缆等)的交叉与衔接。根据施工钻孔平面图的孔数、间距和面积,进一步核实现场的施工面积以满足打孔要求;
(2)核实无误后,按施工平面图定位放线,排水、泥浆倒运工序,合理安排土方、泥浆池、安全通道及堆土场的位置,保持通道畅通无阻;
(3)钻孔就位,要保证钻机钻杆垂直度,防止垂直偏差将已埋管道损坏。钻井机械定位保证水平度偏差≤1%;保证垂直偏差≤0.5%;
(4)在钻孔的两孔之间挖l400mm×700mm×500mm泥浆池,位置在地埋管挖沟方向两孔之间,用作钻井机在施工中水循环载体,不至于流到其他地方,保证施工现场的整洁;
(5)根据在其他工程的施工经验,可采用正循环回转钻井;
(6)钻孔过程中安排质量检查员随时检查钻孔的位置,确保钻孔位置的正确性,并做好检查记录工作,如发现偏差超过标准要求,应及时纠正重新进行定位。
4.2现场预组装施工
(1)地埋U型管宜在现场预组装,管材预组装前应水平堆放在平整的地面上,不应局部受压使管材变形,堆放高度不宜超过2m;管件贮存应成箱存放在货架上或码堆在平整平面上,地面上码堆高度不宜超过2m。HDPE管运至工地采用彩条布覆盖,严禁长时间在太阳下暴晒;
(2)HDPE管在地面连接完成,试压、合格后方可埋管;灌浆回填后须再次试压、合格后方可连接水平干管;水平总管连接完试压、合格后方可回填土。总管连接完后进行系统试压;
(3)HDPE管连接时应注意热熔管头清洁,管道的连接可采用热熔连接(热熔承插连接、热熔对焊连接),与金属管道连接应采用法兰连接;
(4)热熔对接:管材外径Φ≥63mm的HDPE管均可采用热熔对接方式连接,该方法经济可靠,其接头在承拉和承压时都比管材本身具有更高强度。热熔连接温度:200-210℃。使用该方法时,设备仅需热熔对接机,步骤如下:①把待连接管材置于焊机夹具上并夹紧;②清洁管材连接端并铣削连接面;③校直两对接件,使其端面错位量不大于管道壁厚的10%;④放入加热板加热;⑤加热完毕,取出加热板;⑥迅速接合两加热面,升压至熔接压力并保压冷却。
(5)HDPE管连接的注意事项:
①管道连接前应对管材、管件及附属设备、阀门、仪表按设计要求进行核对,并在施工现场进行外观检查,符合要求方准使用。连接时应使用同一生产厂家的管材和管件,如确需将不同厂家(品牌)的管材、管件连接则应经试验证明其可靠后方准使用。每次连接完成后,应进行外观质量检验,不符合要求的必须返工;
②施工人员应进行上岗培训;
③每次施工后,管口应临时封堵。
4.3下管施工
钻孔完成后应立即下管,停留时间越长,孔内的积压现象越严重,甚至可能发生塌孔现象,管子也就越难放。下管前U型管下部端头应设保护装置(软质塑料带)。
当采用人工下管时,可采用在U型管底部加装配重的方法下管施工,依靠配重的重量和HDPE管内水的重量下井,这样既保证下管的速度又可保证HDPE管能有效地到达地源井底,同时,还能保护HDPE管材在下井过程中免受井壁尖石的刮伤、损坏。一般采用人工下管时必须多人合作,提起管子时不得在地上拖拉,不应形成不自然的弯曲,更不允许产生角度。为避免热桥损失,U型管管间距应严格按设计要求,下管时尽量保持同心度并且管与管不要接触太紧,施工时每隔2~4m设置固定支卡将U型管分开,以确保垂直地源换热管的相对位置不变,垂直换热管不会贴在一起。HDPE管下井完成后,须将U型管两个端口密封。
4.4 灌浆回填
竖直井灌浆回填料宜采用膨润土和细砂的混合浆或专用灌浆材料,当埋设在密实或坚硬的岩土体中时,宜采用水泥基料灌浆回填。竖直地埋管换热器安装完成后应在12小时内用灌浆材料回灌封孔,灌浆采用高压注浆泵,从孔底向上灌浆,且每次提升灌浆导管的高度距离浆面≤0.5m,以保证灌浆密实,无空腔。当上返泥浆密度与灌注材料的密度相等时,认为灌浆过程结束。
4.5 水平地埋管施工
(1)水平埋管铺设前,为保护管道,沟槽底部应先铺设150-200mm左右的细砂;
(2)水平埋管安装时,应防止石块等重物撞击管身;
(3)管道敷设时不应有折断、扭结等现象,转弯处应光滑,应在水平方向蜿蜒铺设,留有一定膨胀、收缩空间。
5结束语
地源热泵作为一种环保节能的空调方式,目前正在我国迅速发展。作为一个新兴的技术领域,它的成功应用还有待进一步得到验证。作为施工和管理人员都应该积极参与到推广这项节能环保的新技术中,不断总结经验。相信不久的将来,地源热泵在我国一定有广阔的市场。
查询更多建筑企业中标业绩、诚信信息、资质条件,马上一键查询结果,下载建设通app
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd
地源热泵的优点?
张新世(中原石油勘探局勘察设计研究院)
论文摘要:本文介绍了地源热泵的概念及工作原理,随后详细地论述了地源热泵的特点,和地源热泵在我国发展的限制条件,并介绍了地源热泵在国内使用情况及发展前景,最后鲜明地指出地源热泵技术是目前对人类最友好最有效的供热供冷技术。
1 地源热泵的概念和工作原理
地源热泵是一种利用地下浅层地热资源(包括地下水、土壤和地表水)即可供热又可供冷的高效节能空调系统。利用逆卡诺循环,通过输入少量高品位的电能,实现低品位热能向高品位热能转移。热泵一般有蒸发器、冷凝器、压缩机和膨胀阀四部分组成。
地源热泵的工作原理是:在夏季,热泵机组将建筑物中的热量取出,转移释放到地层中;在冬季,则从地层中提取热量,向建筑物供热。通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。
2 地源热泵的特点
我们知道在地球表面以下一定深度的地温全年相对恒定,地源热泵利用浅层地热作为冷热源,这样就排除了环境因素的影响,与其它供热供冷系统相比,具有以下显著特点。
2.1 利用的是可再生能源
地源热泵在夏季吸收建筑物散发的热量并在浅层地下保存起来,一部分热量在冬季供建筑物的采暖,另一部分热量则直接散发到空气中。就全年来说,建筑物利用浅层地热的热量或冷量大体是相等的。所以说,地源热泵利用的是可再生能源。
2.2 高效节能
由于地源热泵的热源温度全年一般为10~22℃,冬季供热时,水体温度比环境温度高,所以热泵循环的蒸发温度提高,能效比也提高。夏季制冷时,水体温度比环境温度低,冷却效果提高,机组效率也提高。水源热泵的制冷制热系数可达4.0以上,与传统的空气源热泵相比,高出40%左右,其运行费用仅为普通中央空调的50%~60%,与电热锅炉和电热膜供热相比,节约70%左右的电能。
2.3 环保效益显著
水源热泵运行时,需要的仅仅是水源水的热量或冷量,水质不发生任何变化,也不产生任何污染,不耗水、排烟,不产生灰尘,仅仅消耗少量的电能。
从耗电方面来说,节能就是环保。使用水源热泵导致的污染物排放,比空气源热泵减少40%,比电锅炉减少70%。虽然地源热泵也使用制冷剂,但比常规空调减少25%的冲灌量。地源热泵在工厂内整装密封完好,不会像分体空调那样安装时易产生泄漏。
2.4 一机多用
一套地源热泵就可以实现供热、供冷和生活热水供应。即用一套设备可以代替原来的锅炉加空调两套系统,所以一次性投资仅是传统供热制冷的50%~70%。特别是在夏季供冷时,可以利用热泵产生的费热,免费为用户提供生活热水。所以,地源热泵特别适用同时有供热供冷和生活热水供应的建筑。
2.5 节省土地资源
水源热泵除主机和循环水泵外,没有其它安装设备。与锅炉房相比,省去了水处理间、风机间、烟囱、煤场和渣土场,节约了土地资源。
2.6 运行稳定可靠、使用寿命长
由于地源热泵的水体温度稳定,与空气源热泵相比,免除了结霜和除霜的影响。热泵的运转部件少,基本上不需要维修,运行稳定可靠,使用寿命可达20年左右。
2.7 自动化程度高
地源热泵一般是全电脑控制,可根据外部负荷的变化,调整压缩机的工作数量,并设有压缩机超温保护、断水保护等多种保护措施,可实现无人值守。
3 地源热泵供热系统的组成
地源热泵工程一般有地源水系统,热泵机房和末端风机盘管散热系统三部分组成。根据地源换热系统的形式又分为开式环路系统和闭式环路系统。
开式环路系统是将水从水井(包括湖泊和河流)中抽出,送入热交换机组进行热交换,提取热量或冷量后的水再回灌到水井中。开式环路系统用水一般只进行简单的水处理,会引起换热器表面结垢。开式系统是目前地源热泵应用的主要形式。
闭式环路系统又分为立埋式环路系统和平埋式环路系统。它是通过埋在地下的聚乙烯管环路与土壤进行热交换。通常适合安装在别墅等场地较大的建筑物。
4 地源热泵的限制条件
地源热泵被专家们称之为目前可用的对人类最友好最有效的供热供冷形式,近几年在研究和应用上得到了迅速发展,但由于受到以下客观条件的限制,这项技术的应用尚不普遍。
4.1 宣传认识不足
地源热泵技术虽然受到热暖专家的推崇,但是要获得在工程中的普遍应用,需要各阶层领导特别是工程主管领导的认可。由于这项技术是近几年随着我国能源战略的调整才发展起来的,甚至部分热暖技术人员,也存在认识不足的现象。所以,要获得社会的认同还需要加大宣传力度。
4.2 政策力度不够
我国《节约能源法》中,对热电联产和集中供热技术鼓励和发展,而对综合能源利用率是其2倍的地源热泵技术,至今还没有鼓励发展的明确条文。
4.3 水源条件的限制
对于开式环路地源热泵系统是否有充足的水源,以及当地的地质土壤条件是否能保证尾水的回灌顺利实现是地源热泵应用的前提条件。一般来说,用于小区供暖时,建筑容积率要≤1。对于闭式系统,受当地地质条件是否适合埋管和是否有足够的场地埋管等环境条件的限制。
4.4 埋管系统换热计算理论不成熟
对于地源热泵机组和末端风机盘管散热系统目前技术已相当成熟。对开式系统,当地水利部门对水源情况也相当了解;而对埋管系统,目前土壤埋管换热计算理论还不成熟,设计落后于工程应用,这就使工程质量难以保证,并使该项技术的广泛应用受到限制。
4.5 受当地水利部门政策的限制
我国南方水源充足,而北方大部分地区水源缺乏,为保护有限的水资源,每个地方政府都制定了当地的水资源使用法规。虽然地源热泵系统并不消耗水也不污染地下水,但需要大量的水作热载体。有些地方部门对取水和回灌水进行双重收费,使地源热泵的节能效果不能够充分体现,这就限制了该项技术在这些地区的发展。
5 地源热泵的应用
5.1 国外应用情况
地源热泵在日、韩、美和中、北欧应用较为普遍。据1999年的统计,在住宅供热装置中,地源热泵所占比例,瑞士96%,奥地利38%,丹麦27%。美国1998年地源热泵系统在新建筑中占30%,且以10%的速度稳步增长。其中最著名的地源热泵工程有肯塔基州刘易斯威尔的滨水区办公大楼,服务面积15.8×104m2,每月节省运行费用25000 美元。随着该项技术的应用发展,其组织的研究也迅速发展。据有关资料介绍,日本国研究出的高温水地源热泵,出水温度达到80~150℃,且其制热系数COP高达8.0。
5.2 国内应用情况
天津大学热能研究所的吕灿仁教授在1954年就开展了我国热泵的最早研究,1965年研制成功国内第一台水冷式热泵机组。目前多家大学和研究机构都在对水源热泵进行研究。
国内较早生产水源热泵的厂家有清华同方人工环境设备公司和山东海洋富尔达,产品都已系列化。目前热泵机组出水温度已达65℃,制冷系数COP可达6.7。目前国内较典型的用户有沈阳东北电力住宅小区,服务面积8×104m2;北京友谊医院服务面积7.1×104m2,全年节约采暖和供冷运行费用约9元/m2。
中原油田钻井三公司办公楼水源热泵示范工程是我局第一个地源热泵系统。选用钻井综合工程处与清华大学联合研制生产的ZYRB240 型热泵机组2台,服务面积6000m2。该项工程的成功实施必将为地源热泵在中原油田的推广应用起到有力的推动作用。
6 地源热泵的发展前景
6.1 符合政府有关部门的要求
地源热泵高效节能,环保效益好,符合我国的能源政策和环境保护政策,热泵技术的综合能源利用率约为120%~180%。所以国家把热、电、冷联产技术作为鼓励发展的通用节能技术促进了地源热泵技术的发展。
6.2 符合业主的利益
由于地源热泵即可供热,又可供冷。一套系统可以代替原来的两套系统,投资少。且地源热泵占地少,运行成本低,管理方便,这些都符合业主的根本利益。
6.3 符合用户的利益
地源热泵供热费用燃煤集中锅炉房供热费用的一半,夏季供冷费用约为冷水机组的60%,这就减少了用户供热供冷费用的支出,符合用户的切身利益。
6.4 适用地区范围广
冷水机组只能用于夏季供冷,风冷机组只适用于长江流域的供热供冷,而地源热泵除即无可利用地下水又不能埋管的极少数地区外,适用于其它绝大多数地区。
6.5 应用范围不断扩展
地源热泵不仅在建筑采暖和供冷方面得到迅速发展,目前在化工、食品、造纸、农业、冶金、木材干燥、制药等行业中也得到了`广泛应用。据预测2000年这些行业应用地源热泵1200多台,且发展势头强劲。
综上所述,地源热泵技术以其独有的优点,近几年在国内得到迅速发展。随着我国能源结构政策的调整,我国以燃煤锅炉采暖和空气源热泵供冷的传统形式会被更加高效的地源热泵所取代。随着地源热泵技术的研究和发展,它比将成为21世纪最普遍最有效的供热供冷技术。
参考文献
[1]刘兴中.水源热泵系统介绍.2001
[2]吴展豪.地源热泵空调系统.2001
注:本文引至全国油区城镇地热开发利用经验交流会论文集,冶金工业出版社,2003
基于绿色理念的医院建筑中地源热泵技术应用?
地源热泵的优点具体内容是什么,下面中达咨询为大家解答。
1.地源热泵技术属可再生能源利用技术地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地能(Earth Energy),是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。
2.地源热泵属经济有效的节能技术地能或地表浅层地热资源的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是很好的热泵热源和空调冷源,这种温度特性使得地源热泵比传统空调系统运行效率要高40%,因此要节能和节省运行费用40%左右。另外,地能温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。地源热泵的COP值可达到4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。
据美国环保署EPA估计,设计安装良好的地源热泵,平均来说可以节约用户30~40%的供热制冷空调的运行费用。
3.环境和经济效益显著地源热泵机组运行时,虽然也采用制冷剂,但比常规空调装置减少25%的充灌量;属自含式系统,即该装置能在工厂车间内事先整装密封好,因此,制冷剂泄漏机率大为减少。该装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。不消耗水也不污染水,不需要锅炉,不需要冷却塔,环保效益显著。
地源热泵机组的电力消耗,与空气源热泵相比也可以减少40%以上;与电供暖相比可以减少70%以上,它的制热系统比燃气锅炉的效率平均提高近50%,比燃气锅炉的效率高出了75%.
4.一机多用,应用广泛地源热泵系统可供暖、空调制冷,还可提供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统,特别是对于同时有供热和供冷要求的建筑物,地源热泵有着明显的优点。不仅节省了大量的能量,而且用一套设备可以同时满足供热、供冷、供生活用水的要求,减少了设备的初投资,地源热泵可应用于宾馆、居住小区、公寓、厂房、商场、办公楼、学校等建筑,小型的地源热泵更适合于别墅住宅的采暖、空调及生活用水。然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统;节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。
5.自动运行地源热泵机组由于工况稳定,可以设计成简单的系统,部件较少,机组运行可靠,维护费用用低,自动控制程度高,使用寿命长。
6.无环境污染地源热泵的污染物排放,与空气源热泵相比,相当于减少38%以上,与电供暖相比,相当于减少70%以上,真正的实现了节能减排节能减排是减少能源浪费和降低废气排放更多。
7.维护费用低在同等条件下,采用地源热泵系统的建筑物能够减少维护费用。地源热泵非常耐用,它的机械运动部件要比常规系统少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,其地下部分可保证50年,地上部分可保证30年,因此地源热泵是免维护空调,节省了维护费用,使用户的投资在3年左右即可收回。
此外,机组使用寿命长,均在15年以上;机组紧凑、节省空间;自动控制程度高,可无人值守。
8.使用寿命长地源热泵的地下埋管选用聚乙烯和聚丙烯塑料管,寿命可达50年,要比普通空调高35年使用寿命。地上部分可保证30年。
9.维持生态环境平衡地源热泵夏天把室内的热量排到地下,冬天把地下的热量取出来供室内使用,相对来说,向环境排放更少的能量,维持生态环境的平衡。
10.节省空间没有冷却塔、锅炉房和其它设备,省去了锅炉房,冷却塔占用的宝贵面积,产生附加经济效益,并改善了环境外部形象。
11.适用范围广地源热泵系统的能量来源于自然能源。它不向外界排放任何废气、废水、废渣、是一种理想的“绿色空调”。被认为是目前可使用的对环境最友好和最有效的供热、供冷系统。该系统无论严寒地区或热带地区均可应用。可广阔应用在办公楼、宾馆、学校、宿舍、医院、饭店、商场、别墅、住宅等领域。
12.远程中央控制智能化远程控制智能化软件可以利用中央计算机控制整个系统,能够随人流变化而自动调整地热泵制冷或供暖,实现节能最大化,运行费用最小化。还可设置显示和打印设备,可存储、分析各种采暖、制冷、维修等经济及技术数据,促进系统运行最优化。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd
基于绿色理念的医院建筑中地源热泵技术应用有哪些特点?请看下文介绍。
随着人们保健意识的日益提高, 人们自然对医疗环境的要求也相应提高,对于现代化医疗建筑建设者来讲,营造生态保健型绿色医院就成为我们的努力方向,在现代医院建筑中引入绿色节能的地源热泵技术,使医院真正成为人类和谐舒适,环境优美,绿色生态的现代化疗养场所。因此,地源热泵系统在现代医院建筑中具有很大的应用价值,它将成为我国医院建筑节能领域重点推广的技术之一。
随着国民经济的迅猛发展,人们保健意识的日益提高,对医疗环境的要求也相应提高,营造生态保健型绿色医院就成为我们的努力方向。因此在现代医院的方案立项、规划、设计中,我们应结合人类生命科学、生态学、环境科学等新观念,在现代医院建筑中引入绿色节能的地源热泵技术,以改善医院的空气质量,优化医院的气流循环,降低医院能量消耗,扩大医院绿化覆盖率,使医院真正成为和谐舒适、环境优美、绿色生态的现代化疗养场所。
1.地源热泵技术的工作原理
1.1什么是地源热泵
地源热泵系统,又称地源中央空调,是一种利用浅层和深层的大地能量,包括土壤、地下水、地表水等天然能源作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,即自然能源,经过逆向热力循环,提升为建筑能源的一种高效节能热力系统。地源热泵系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。
1.2 系统组成及分类
地源热泵系统,通常由地热能交换系统、热泵机房系统、建筑物内末端热交换系统三部分组成。我们按照安装位置(安装地点)可分为地上(室内)和地下(室外)两部分,地上部分主要由暖通设备组成。地下部分也称为地下耦合系统或地下热交换器,目前应用较多的有3种形式:开式循环系统、闭式循环系统、混合循环系统。地源热泵系统按地热能交换系统的不同可分为地表水地源热泵系统、地埋管地源热泵系统、地下水地源热泵系统(图1)。
图1地源热泵系统
2.地源热泵技术在医院建筑的应用
2.1高效节能,绿色环保
地源热泵系统在夏季高温差的散热和在冬季低温差的取热,使得其地下部分的换热效率很高,因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,而且冬季运行不需要任何辅助热源和除霜系统,大大地减少了电能消耗和空调主机除霜的能耗损失,从而达到空调主机节能的目的,与锅炉(电、燃料)供热系统相比,锅炉供热只能将90%以上的电能或70~90%的燃料内能转化为热量,供用户使用,因此地源热泵要比电锅炉加热节省三分之二以上的电能,比燃料锅炉节省二分之一以上的能量;同时地源热泵系统既不破坏地下水资源,又无任何污染,可以建造在人口密集的现代医疗区域内,没有燃烧,没有排烟,没有任何气体排放到大气中,也没有废弃物,即无污染物排放,无噪音及霉菌污染,不需要堆放燃料废物的场地,且不用远距离输送热量,可大幅度降低温室气体的排放,既保护了环境,又可以大大降低温室效应,减缓全球变暖的进程,是一种理想的节能、环保的“绿色技术”。
2.2 机组运行稳定可靠
地源热泵系统的冷热源是地层,而地层温度一年四季相对稳定,远远小于环境的空气温度波动,冬季比环境空气温度高,夏季比环境空气温度低,温度波动范围一般为10℃~25℃,特别像浙江某新院这类的现代化医院,处于浙江温州湿地的岛屿内,冬暖夏凉,具有得天独厚的资源优势,地源热泵系统的冷热源很好;同时由于温度的恒定性,使得系统的压缩机工作稳定,不会出现传统设备中制冷剂压力过高或过低的现象,运行更加稳定。在系统机组设计和配置上,每台机组采用相对独立供冷或供热系统,只要地埋管道系统运行正常,个别机组故障将不影响整个系统的运行。机组的运行状况稳定,几乎不受环境温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更不会出现因结霜除霜时停机现象,即使系统处于严寒的冬季,机组也可以源源不断地向病房、门诊等用户供热。由于系统的工况稳定,所以可以设计简单系统,部件较少,机组运行简单可靠,维护费用低;自动控制程度高,可无人值守;此外,机组使用寿命长,据国外统计,机组寿命在20年以上。
2.3 降低建筑和人力成本
投入地源热泵系统没有冷却塔、锅炉房和其他附属用房,省去了锅炉房,冷却塔及附属的油罐、煤场、渣场所占用的宝贵面积,节省了建筑空间和医院地皮,降低医院建筑的土地成本,产生附加经济效益,并改善了环境的外部形象。省去锅炉房,省去锅炉值班和维护人员,大大节省医院的人力成本, 排除锅炉房供暖后产生的噪声污染、烟尘危害等忧虑,符合现代医院减能节排,减员降耗,高效运转的后勤改革的发展趋势。同时地源热泵系统省去锅炉房和储油库等危险设施,排除了现代医院很大的安全隐患,是创建平安医院的有利条件。
3. 经济效益分析
由于地源热泵的热源温度全年较为稳定,一般为10℃~25℃,其制冷、制热系数可达3.5~4.4 ,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50%~60%。维修量极少,使用寿命和建筑物同期,折旧费和维修费也都大大低于传统空调。在工程的造价上,地下布管工程造价约占系统工程的总造价的三分之一。据估算,在初投资方面地源热泵系统比普通的热泵机组要大,约是普通成本的2倍,但在运行成本上有较大的优势,据美国环保署(EPA)估计,土壤源热泵系统的运行费比风冷热泵的运行费节约30%~40%,这主要在主机的运行效率上得以体现。地源热泵系统不仅一机多用,还可以代替原来的锅炉加制冷机的两套装置或系统,不仅节省了大量能源,而且减少了设备的初投资。同时该系统紧凑,省去了锅炉房和冷却塔,节省建筑空间,也有利于建筑的美观。如上所述,地源热泵系统的另一个显著的特点是大大提高了一次能源的利用率,因此具有高效节能的优点,它比传统空调系统的运行效率要高约40%~60%。另外,地源温度较恒定的特性,使得热泵机组运行更可靠、稳定,整个系统的维护费用也较锅炉-空调系统大大减少,保证了系统的高效性和经济性。
结束语
虽然地源热泵技术的应用时间不长,在国内的基础性研究和医院建筑的实践经验还不足,所以有些内容只能引用国外文献。但相信随着国家政策的进一步引导,地源热泵技术的不断发展以及进一步完善成熟,其充分利用地下热能资源方面的生态环保优势会更加显著,此项技术在我国的应用必将越来越广泛。对于追求绿色生态的现代化医院建设者来说,地源热泵系统具有很大的应用价值,相信不久的将来它将成为我国医院建筑节能领域重点推广的技术之一。
以上由中达咨询搜集整理
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:/#/?source=bdzd
今天的讨论已经涵盖了“地源热泵空调技术”的各个方面。我希望您能够从中获得所需的信息,并利用这些知识在将来的学习和生活中取得更好的成果。如果您有任何问题或需要进一步的讨论,请随时告诉我。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。