1.中央空调运行原理是什么啊?写字楼中央空调应该怎么样维护?谢谢!

2.中央空调系统验收需要哪些资料?

3.中央空调相关规范有哪些

4.中央空调维护保养实用技术的内容简介

5.中央空调水系统节能技术案例分析

中央空调技术资料_中央空调技术资料管理

与一般空调一样,水冷式中央空调有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装置,成低温低压液体,流经蒸发器,吸热,再经压缩。

在蒸发器的两端接有冷冻水循环系统,制冷剂在此次吸的热量将冷冻水温度降低,使低温的水流到用户端,再经过见机盘管进行热交换,将冷风吹出。

扩展资料:

水冷式中央空调的优点:

1、占地面积大:水冷式中央空调一般只适用于大型工业、商业项目,占地面积较大;

2、舒适度高:具有夏天送风暖和、冬天吹风不干燥的特点,使用舒适度高;

3、节能环保:为客户提供工业冷水的同时,风冷冷水机还可供应大量的免费卫生热水,热系统运行时增加冷却,能量利用率高,回收热量可达制冷量30-80%;

4、安全可靠:水温体度较恒定的特性,使热泵机组运行更可靠,更稳定,保证了系统的高效性和经济性,且无需专人维护或操作,运行维护费用极少;

5、维护较麻烦:水冷式中央空调在维护保养上比风冷式空调要麻烦,需要每年进行清洗和维护。

6、智能控制:全自动微电脑控制,无需人工监控,可实现远程或集中管理。

通过以上的介绍,我们知道水冷式中央空调使用舒适度高,安全可靠,维护方便。因为这些优点,现在很多用户家中都开始安装水冷式中央空调。而在未来,随着中央空调技术的不断推广,使用水冷式中央空调的用户也必将越来越多。

中央空调运行原理是什么啊?写字楼中央空调应该怎么样维护?谢谢!

在产品设计时,从我国国情和用户需求出发,采用成熟科学的热泵技术,优化配置资源。兼顾制冷与制热工况,重点保证用户使用效果。机组运行时的冷热工况切换,通过水系统管路和切换而实现,氟系统保持稳定不变。

水源热泵机组,除了具有传统水源热泵特点以外,还针对中国国情进行创新设计:

一、供热出水温度高

在标准工况下,通用型水源热泵机组可以保证出水温度在48℃以上,环保高温型水源热泵机组出水温度可在60℃以上。高出水温度,可以减小室内侧设备的选型容量,并保证室内的温暖舒适性。

二、进出水温差大,节约水资源

在机组工况时,水源侧在冬季的进出水温差为8℃,而夏季的进出水温差为11℃。区别于传统的5℃温差设计,机组用水量可以节省40%,降低运行费用。

三、世界先进水平的满液式技术

高效满液型水源热泵机组采用满液式蒸发器,机组换热效率高。设计独特的回油系统及制冷剂流量精密控制系统,大大提高了机组能效,节能效果比国家标准高30%。

四、系统优化简洁,部件精良可靠

通过对系统的优化设计和独立模块组合,使机组系统运行简便可靠。制冷系统控制元件及电气元件均采用全球顶级部件,保证机组在宽广的使用工况范围内长期高效可靠地工作。运动部件少,故障率低,维护成本低。

五、机组型号齐全,适用范围广

机组型号齐全,单机容量从150KW-3800KW,可广泛利用各类水资源,如:地下水、江水、河水、湖水、海水、水库水、污水、中水、地热尾水、工业废水等等。

六、智能化数字控制

采用大屏幕液晶显示器、工业级智能化控制器和先进的计算机控制系统,具有全数字化汉显功能,工作流程采用可视化控制面板,令操作者对机组运行情况一目了然。并可与外部设备、远程用户和控制室通过标准接口相连,实现自动开关机,报警、提示、记录、检索、故障诊断等多重维护管理控制功能。

七、多重自动保护功能

机组具有压缩机排气超温、电机超温、冷水防冻温度保护;过电流、缺相、逆相、过载电气保护;冷媒系统高低压、油位、油压差、断水异常状态保护等多重保护功能。

八、节能效率显著

蒸发器、冷凝器均采用内外强化传热的换热管,换热效率更高。先进的工艺设计,使能量损耗降到最低。

九、操作简便、运行平稳

机组采用智能自动控制,操作非常简便;并且采用了高效的防护消声措施,运行平稳。

中央空调系统验收需要哪些资料?

中央空调运行原理是什么啊?写字楼中央空调应该怎么样维护?谢谢!

原理;溶液吸收式制冷:稀溶液加热(集中供热;自备燃煤、燃油、燃气锅炉等)--水蒸汽--(冷却水)冷凝--冷剂水--节流U--喷淋(冷剂水)蒸发制冷、浓溶液吸收水蒸气-----稀溶液-、-、-。

在喷淋蒸发时制冷作用于冷媒水盘管制取7—14度冷媒水供末端使用。

维护:

写字楼中央空调造价

1 VRV国产品牌 造价在1800000-1900000左右

2 水源热泵 造价在2200000-2500000左右,如果需要生活热水回收,再此基础上加上5%左右

3 地源热泵 挖洞100-150m,3.5㎡一个洞,也就是3.5*3.5的矩阵,每个井可以提供7KW的名誉换热量,要审批,主要是如果低下条件允许的话,就可以,千万不要将就,否则后期维护很难,如果有这方面的关系,可以在系统运行调试的时候申请环保补助,官方会给20%上下的财政补助,造价和水源热泵不相上下

4 水冷冷热水机组 造价在1900000-2000000上下,

5 风冷冷热水机组 造价在2100000-2300000上下,

因为你没提供更详细的资料

我是按照7000㎡的空调使用面积来计算的

具体问题具体分析

我的造价也很笼统

不过我个人比较推荐地源热泵

当然也是条件很理想的基础上啊

如果条件不是很理想

我觉得应该这样分析

如果你想让初投资小,后期维护费用不是你投资范围的话,那就选择4

如果你不在乎初期投资,想让后期费用降低以节省维护成本,那就选择1,但不是国产的,因为国产VRV根本称不上VRV,冬天衰减很严重,我推荐三星,日立这类二流国际品牌,至于大金那样一流品牌,造价师天文数字,我觉得也不划算

依据你所描述的资源环境,建议采用水源热泵,但要考虑整个地表水部分的深度、面积、河水的清洁度以及流动性等等。最重要的是要考虑整个换热盘管部分对原有的河道有没有其他的影响。对于VRV国产品牌,按照你的面积和用途,这也是一个选择。但VRV空调系统,从严格意义上说它不能算是真正的中央空调。而且能效比很低。它的优点是能独立控制。而地源热泵这块,由于你的空调面积相对较小,在这我建议你不要采用,因为工程造价相对比较高。没有相应的投资必要。但可以肯定的说,换热井肯定是可以挖的,华东地区深度一般在80-120米之间。由于目前国家对地下水采集这块有严格的规定,所以地源热泵系统绝大部分都是采用闭式循环系统,也就是只和地下土壤及地下水换热,而不采集地下水,这样是允许的。水冷机组+锅炉这种传统的空调形式,其实他的维护成本抛除锅炉部分,它是这几个空调系统中最低的。而风冷系统是目前写字楼中央空调的次选项,因为它的工程成本是最低的。

对于空调造价。VRV系统,大概450-550元/㎡;地表水水源热泵,约400-500元/㎡;地源热泵,地埋管部分约5500元/口井,地上部分350-450元/㎡;水冷机组与地源热泵地上部分造价差不多;风冷机组,约300-400元/㎡。

全手工制作,希望能帮到你!

写字楼中央空调怎么计费?

这种按平方收费不合理。应该用中央空调计费系统,能量型计费,根据使用能量缴费。用多少交多少,少用少交,不用不交。

溴化锂中央空调运行原理是什么

溶液吸收式制冷:稀溶液加热(集中供热;自备燃煤、燃油、燃气锅炉等)--水蒸汽--(冷却水)冷凝--冷剂水--节流U--喷淋(冷剂水)蒸发制冷、浓溶液吸收水蒸气-----稀溶液-、-、-。

在喷淋蒸发时制冷作用于冷媒水盘管制取7—14度冷媒水供末端使用。

写字楼中央空调如何配置?

根据冷量选择机组就行了。总冷负荷的工式为Q=(Qw+116.3n)*1.5(w),Qw=KA(aT)(W),其中Q=要计算总冷负荷,Qw=围护结构总冷负荷,n=室内人数。K=围护结构传热系数A=围护结构传热面积aT室内外侧空气温差。还有一个算法,直接成的数值写字楼的每平米冷负荷是90-115W。在乘以房间总面积总冷量就出来了

写字楼中央空调改造空调内机外机应该怎样安装

其实外机的匹数和内机总匹数有一个能效比,控制在这个比例范围内就可以了,当然小一些也挺好的,加上使用方法适当,可以延长机子的使用寿命。 现在很多中央空调的控制器都配有遥控器和线控器,可以任选其一。 中央空调的风口可以是固定的,但是可以通过控制器调节风向,达到整个空间温度的均衡。 在福建可以试着了解七彩工程哦。

写字楼中央空调一般怎样收费

中央空调一般是以水为介质,将能量在用户末端和能量中心进行交换以实现集中供冷(或供热)的空气调节系统。分散使用和集中供能是中央空调区别家用空调的主要特征。中央空调虽是一个空气调节系统,但我们通常所说的中央空调主要是指能量中心的制冷主机,按能源方式可分为电制冷中央空调、热制冷中央空调和地温中央空调;按制冷工质可分为氨制冷机组、氟利昂制冷机组和溴化锂制冷机组;还可按其它方式进行不同分类。既然中央空调是集中供能和分散使用,如果分散使用的付费主体不同,就要涉及到费用分摊的问题,这将是本文要着重讨论的中央空调计费方式中央空调最简单的计费方式就是按面积分摊,它源于计划经济中集中供暖时的暖气收费,当时“用暖的人”是单位的人,暖气费用是以福利包干的形式由单位统一支付,这种不合理的收费方式并未引起人们太多关注。随着市场经济的成熟,货币分房、100%房屋产权、“单位人”向“社会人“的转变,这种简单、原始的不合理计费方式已逐步为人们所抛弃。能量“商品化”,按量收费是市场经济的基本要求。中央空调要实现按量收费,必须有相应的计量器具和计量方法,按计量方法的不同,目前中央空调的收费计量器具可分为直接计量和间接计量两种形式。直接计量形式的中央空调计量器具主要是能量表。根据能量守恒原理,中央空调对空间的热交换量与其介质中的能量变化量相等,能量表就是通过直接计量中央空调介质(冷冻水)的能量变化量来实现对中央空调的量化,其工作原理是依据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt。(能量表)由带信号输出的流量计、两只温度传感器和能量积算仪三部分组成,它通过计量中央空调介质(冷冻水)的某系统内瞬时流量、温差,由能量积算仪按时间积分计算出该系统热交换量。这种中央空调计费方式原理明确,结果直观,易于理解。由于它要计量多个参数,特别是对温差的精度要求较高,所以其生产成本较高,同时改变中央空调的系统设计和要求水质,普遍采用受到制约,主要用在分层、分区的中央空调计费上。有些热量表生产厂商将其暖气表的能量积算仪上加“取正”功能后就认为可以用在中央空调的计费上,这是一种误解。暖气和中央空调计量原理虽相同,但实际应用环境不一样:暖气是通过调节水流量来调节热交换量的,其进、回水温差在35℃左右,对流量精度要求较高而温差精度要求较低,所以热量表标准温差精度在3-95℃;中央空调未端是定流量系统,它是通过调节风速来改变热交换面积,从而达到调节热交换量之目的!因此其对流量精度要求较低而温差精度较高,因中央空调的进、回水标准温差是5℃,如果允许1℃的误差,在一个装有6台风机盘管的家庭开一台时,已不能满足计量要求。因此用于中央空调计费的能量表温差精度应在1℃以下。现在暖气热量表温差精度多在2-3℃,价格已在千元,要其达到计量中央空调的温差精度成本将更高。所以,目前以能量表来实现中央空调的计费技术虽比较成熟,但其应用成本太高而并未被商家看好和消费方接受。在中央空调直接计费因价高昂和应用不便而无法为用户所接受,又出现了一些简单、便宜的间接计费方法。比喻:电表计费,热水表计费等。电表计费就是通过电表计量用户的空调末端的用电量作为用户的空调用量依据来进行收费的;热水表计费就是通过热水表计量用户的空调末端用水量作为用户的空调用量依据来进行收费的,但这两种间接计费方法虽简单、便宜;但都不能真正反应空调“量”的实质,中央空调的要计的“量”是消耗的能量(热交换量)的多少。如按这种计费方法,中央空调系统能量中心的空调主机既使不运行或干脆没有空调主机,只要用户空调末端打开都有计费,这显然是不合情理的。中央空调计费就是将中央空调“能量”的商品化,而商品的价格取决于商品的内在的“质”和外在的“量”,而这种计费方式只计量了中央空调末端的外在的“量”,却忽略了中央空调内在的“质”,用户的空调未端使用“用电量”、“用水量”并不等于用户所消耗的“用冷量”,所以出现了不合情理的结果,也必然造成计费纠纷;因而这种中央空调计费方式被市场所淘汰也在情理之中。计时计费就是通过计量器计量用户空调末端的使用时间、同时参考空调末端能力作为用户的空调用量依据来进行收费的,相对于电表计费、热水表计费来说,根据用户的使用时间计费变得更加直观,但其仍然没的涉及到中央空调的本“质”----“用冷量”,也就是说,用户空调未端使用的“时间量”同样不等于用户所消耗的“用冷量”。因此,要合理的计费,就必须对中央空调的“质”进行定“量”。CFP系列中央空调计费系统是最新一代以风机盘管为计费对象的中央空调计量器具,它是郑州春泉暖通节能设备有限公司首创的“有效果计费”原则和“计时计费”法的结晶,包括CFP计费器、CRS485-D区域管理器、CJ-W98管理软件和CJ-2000计费主机四部分。根据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt,中央空调风机盘管的流量q基本是定值,时间t我们可以通过计时器计量,温差(T2-T1)是技术的关键点。物质的热交换有传导、对流和辐射三种方式,中央空调风机盘管的热交换主要是通过传导来实现的,不存在对流,并且辐射也可忽略不计,传导量与温差和换热面积成正比,风机盘管的换热面积又与风量v成正比。在标况(供水温度T1=7℃;回水温度T1=12℃)下,中央空调风机盘管的热交换量计算公式Q=∫cΔTV=∫c(T2-T1)qt可变为Q=∫Xvt,(v:风速系数;X:型号能力系数;t:使用时间)。根据模糊理论,我们将供水温度T1≤12℃或T≥40℃,基本能满足用户正常使用要求的情况作为有效计量收费;供水温度T1>12℃空调使用效果较差的时间作为损耗进入成本,不收取用户费用,这就是“有效果“计费原则。就如1KW的电炉,用1小时就是1度电,但其前题是电压在220V±5%范围内,这个±5%就是基本能满足用户正常使用要求的“有效果”范围,如果电压超过±5%这一范围,用户电器就没法正常工作。CFP系列中央空调计费系统不仅计量了中央空调的“量”(用户使用时间),关键在于计量的是中央空调的“质量”(有效果时间)!较好的解决了中央空调计费的合理性,确保作为商品的中央空调“用冷量”具有实用性,满足用户正常使用要求,较好的保障了用户的权益;同时其将供水温度T1>12℃或T<40℃,空调使用效果较差的时间作为损耗处理,费用计入中央空调运行成本,符合物业管理收费原则。她良好的适用性对于中央空调系统的设计、安装无任何特殊要求,较小的投资成本满足了用户的需求,已广泛应用于以风机盘管为末端的住宅楼、写字楼中。该系统具有对用户的空调进行计费、查询、欠费禁用等管理功能。CFP系列中央空调计费系统的计费误差经过系统内二次分摊后已达到中央空调计量精确度要求。2002年10月20日,CFP系列中央空调计费系统取得国家计量器具型式批准,CFP中央空调计费系统是目前唯一国家主管部门批准中央空调专用计量器具。

中央空调怎么维护 中央空调维护注意事项

中央空调相关规范有哪些

第一部分开工前资料

1、中标通知书及施工许可证

2、施工合同

3、委托监理工程的监理合同

4、施工图审查批准书及施工图审查报告

5、质量监督登记书

6、质量监督交底要点及质量监督工作方案

7、岩土工程勘察报告

8、施工图会审记录

9、经监理(或业主)批准所施工组织设计或施工方案

10、开工报告

11、质量管理体系登记表

12、施工现场质量管理检查记录

13、技术交底记录

14、测量定位记录

第二部分质量验收资料

1、地基验槽记录

2、基桩工程质量验收报告

3、地基处理工程质量验收报告

4、地基与基础分部工程质量验收报告

5、主体结构分部工程质量验收报告

6、特殊分部工程质量验收报告

7、线路敷设验收报告

8、地基与基础分部及所含子分部、分项、检验批质量验收记录

9、主体结构分部及所含子分部、分项、检验批质量验收记录

10、装饰装修分部及所含子分部、分项、检验批质量验收记录

11、屋面分部及所含子分部、分项、检验批质量验收记录

12、给水、排水及采暖分部及所含子分部、分项、检验批质量验收记录

13、电气分部及所含子分部、分项、检验批质量验收记录

14、智能分部及所含子分部、分项、检验批质量验收记录

15、通风与空调分部及所含子分部、分项、检验批质量验收记录

16、电梯分部及所含子分部、分项、检验批质量验收记录

17、单位工程及所含子单位工程质量竣工验收记录

18、室外工程的分部(子分部)、分项、检验批质量验收记录

第三部分试验资料

1、水泥物理性能检验报告

2、砂、石检验报告

3、各强度等级砼配合比试验报告

4、砼试件强度统计表、评定表及试验报告

5、各强度等级砂浆配合比试验报告

6、砂浆试件强度统计表及试验报告

7、砖、石、砌块强度试验报告

8、钢材力学、弯曲性能检验报告及钢筋焊接接头拉伸、弯曲检验报告或钢筋机械连接接头检验报告

9、预应力筋、钢丝、钢绞线力学性能进场复验报告

10、桩基工程试验报告

11、钢结构工程试验报告

12、幕墙工程试验报告

13、防水材料试验报告

14、金属及塑料的外门、外窗检测报告(包括材料及三性)

15、外墙饰面砖的拉拔强度试验报告

16、建(构)筑物防雷装置验收检测报告

17、有特殊要求或设计要求的回填土密实度试验报告

18、质量验收规范规定的其他试验报告

19、地下室防水效果检查记录

20、有防水要求的地面蓄水试验记录

21、屋面淋水试验记录

22、抽气(风)道检查记录

23、节能、保温测试记录

24、管道、设备强度及严密性试验记录

25、系统清洗、灌水、通水、通球试验记录

26、照明全负荷试验记录

27、大型灯具牢固性试验记录

28、电气设备调试记录

29、电气工程接地、绝缘电阻测试记录

30、制冷、空调、管道的强度及严密性试验记录

31、制冷设备试运行调试记录

32、通风、空调系统试运行调试记录

33、风量、温度测试记录

34、电梯设备开箱检验记录

35、电梯负荷试验、安全装置检查记录

36、电梯接地、绝缘电阻测试记录

37、电梯试运行调试记录

38、智能建筑工程系统试运行记录

39、智能建筑工程系统功能测定及设备调试记录

40、单位(子单位)工程安全和功能检验所必须的其他测量、测试、检测、检验、试验、调试、试运行记录

第四部分材料、产品、构配件等合格证资料

1、水泥出厂合格证(含28天补强报告)

2、砖、砌块出厂合格证

3、钢筋、预应力、钢丝、钢绞线、套筒出厂合格证

4、钢桩、砼预制桩、预应力管桩出厂合格证

5、钢结构工程构件及配件、材料出厂合格证

6、幕墙工程配件、材料出厂合格证

7、防水材料出厂合格证

8、金属及塑料门窗出厂合格证

9、焊条及焊剂出厂合格证

10、预制构件、预拌砼合格证

11、给排水与采暖工程材料出厂合格证

12、建筑电气工程材料、设备出厂合格证

13、通风与空调工程材料、设备出厂合格证

14、电梯工程设备出厂合格证

15、智能建筑工程材料、设备出厂合格证

16、施工要求的其他合格证

第五部分施工过程资料

1、设计变更、洽商记录

2、工程测量、放线记录

3、预检、自检、互检、交接检记录

4、建(构)筑物沉降观测测量记录

5、新材料、新技术、新工艺施工记录

6、隐蔽工程验收记录

7、施工日志

8、砼开盘报告

9、砼施工记录

10、砼配合比计量抽查记录

11、工程质量事故报告单

12、工程质量事故及事故原因调查、处理记录

13、工程质量整改通知书

14、工程局部暂停施工通知书

15、工程质量整改情况报告及复工申请

16、工程复工通知书

第六部分必要时应增补的资料

1、勘察、设计、监理、施工(包括分包)单位的资质证明

2、建设、勘察、设计、监理、施工(包括分色)单位的变更、更换情况及原因

3、勘察、设计、监理单位执业人员的执业资格证明

4、施工(包括分包)单位现场管理售货员及各工种技术工人的上岗证明

5、经建设单位(业主)同意认可的监理规划或监理实施细则

6、见证单位派驻施工现场设计代表委托书或授权书

7、设计单位派驻施工现场设计代表委托书或授权书

8、其他

第七部分竣工资料

1、施工单位工程竣工报告

2、监理单位工程竣工质量评价报告

3、勘察单位勘察文件及实施情况检查报告

4、设计单位设计文件及实施情况检查报告

5、建设工程质量竣工验收意见书或单位(子单位)工程质量竣工验收记录

6、竣工验收存在问题整改通知书

7、竣工验收存在问题整改验收意见书

8、工程的具备竣工验收条件的通知及重新组织竣工验收通知书

9、单位(子单位)工程质量控制资料核查记录(质量保证资料审查记录)

10、单位(子单位)工程安全和功能检验资料核查及主要功能抽查记录

11、单位(子单位)工程观感质量检查记录(观感质量评定表)

12、定向销售商品房或职工集资住宅的用户签收意见表

13、工程质量保修合同(书)

14、建设工程竣工验收报告(由建设单位填写)

15、竣工图(包括智能建筑分部)

建筑工程质量监督存档资料

1、建设工程质量监督登记书

2、施工图纸审查批准及建筑工程施工图审查报告

3、单位工程质量监督工作方案

4、建设工程质量监督交底会议通知书及交底要点

5、建设工程质量监督记录

6、建设工程质量管理体系登记表

7、施工现场质量管理检查记录

8、地基、基桩工程质量监督验收检查通知书

9、地基验槽记录及基桩工程质量验收报告

10、地基、基桩工程质量核查记录

11、设计单位出具(或认可)的地基处理措施及地基处理工程质量验收报告

12、地基与基础分部工程质量监督验收检查通知书及验收报告

13、地基与基础分部工程质量核查记录

14、主体结构分部工程质量监督验收检查通知书及验收报告

15、主体结构分部工程质量核查记录

16、特殊部分工程质量监督验收检查通知书及验收报告

17、线路敷设工程质量监督验收检查通知书及验收报告

18、钢材力学、弯曲性能检查报告及钢结构焊接接头拉伸、弯曲检验报告

19、预应力筋、钢丝、钢绞线力学性能进场复验报告

20、水泥物理性能检验报告

21、砼试件强度统计表、评定表试验报告

22、装配或预制构件结构性能检验合格证及施工接头、拼缝的砼承受施工满载、全部满载时试件强度试验报告

23、防水砼、喷射砼抗压、抗渗试验报告及锚杆抗拨力试验报告

24、地基处理工程中各类地基和各类复合地基施工完成后的地基强度(承载力)检验结果

25、桩基工程基桩试验报告

26、砂浆强度统计表及试件试验报告

27、砖、石、砌块强度检验报告

28、建筑工程材料有害物质及室内环境的检测报告

29、防水材料(包括止水带条和接缝密封材料)、保温隔热及密封材料的复验报告

30、金属及塑料外门、外窗复验报告(包括材料、风压性、气透性、水渗性)

31、外墙饰面砖的拉拔强度试验报告

32、各类电梯、自动扶梯、自动人行道安装工程的整机安装验收报告

33、各类设备安装工程的隐蔽验收、系统联动、系统调试及系统安装验收记录

34、砼楼面板厚度钻孔抽查记录

35、工程质量事故报告单

36、工程质量整改通知书及工程局部暂停施工通知书

37、工程质量复工意见书及工程质量复工通知书

38、单位(子单位)工程质量控制资料核查记录(质量保证资料审查记录)

39、单位(子单位)工程安全和功能检验资料核查及主要功能抽查记录

40、单位(子单位)工程观感质量检查记录(观感质量评定表)

41、施工单位工程竣工报告

42、监理单位工程竣工质量评价报告

43、勘察单位勘察文件及实施情况检查报告

44、设计单位设计文件及实施情况检查报告

45、建设工程竣工验收报告

46、工程竣工验收监督检查通知书

47、质量保证资料核查记录

48、单位(子单位)工程质量竣工验收记录(工程质量竣工验收意见书)

49、重新组织竣工验收通知书

50、工程竣工复验意见书

51、竣工验收存在问题整改通知书及存在问题整改验收意见书

52、工程质量保修合同

53、单位(子单位)工程质量监督报告

中央空调维护保养实用技术的内容简介

中央空调设计规范

1.总则  主要规定了这本规范适用的范围,那就是“适用于上海地区新建与扩建的居住和公共建筑中,以舒适性要求为主,制冷量在7-80kw的家用(商用)中央空调的设计。改建工程可参照规范执行。” 2.术语  与本规范有关的,在其他规范中不大引用的术语。  3.设计参数  按室外气象参数与室内空气质量两方面进行规定。室外气象参数是空调设计使用的室外空气计算参数;室内空气质量是根据目前常用的家用中央空调自身特点而制定的室内空气温度、含尘量、新风量等的一系列规定。  4.空气调节  4.1 负荷计算 规定了空调负荷计算的要求与方法,并对家用中央空调使用的特殊性作了计算上的要求。  4.2 系统设计 规定了空调风系统的划分原则,并对分体多联空调系统、水环热泵空调系统、空调水管路系统、冷却塔和排风系统等设计、选用提出了要求。  4.3 空气处理与分布 在空调系统的空气处理、空气分布、送风温差、空气循环次数及风速等方面规定了设计要求。  5.设备、管道与布置  5.1 一般规定 设备及管道材料的选择与布置应符合国家和上海市政府发布的现行法令、规范、标准、条例。  5.2 设备、材料选择 对设备、材料作出了安全、高效、环保、节能的选择原则。  5.3 设备、管道布置 对设备、管道布置作了较严格规定,尤其是家用中央空调室外机的布置,更是涉及到人身安全的大问题,设计不容马虎。  6.防腐与保温  叙述了防腐与保温的设计原则和设计规定,尤其是涉及到消防、安全,确保使用等方面作了较为详细的规定,如保温材料的选择、厚度的确定等。  7.监测与控制  规定了家用中央空调监测与控制的一般要求、设置原则;空调系统有代表性的参数检测仪表的要求;空调系统监控手段等。  8.消声与隔振  提出了消声与隔振设计原则,规定了必须执行的有关规范、设备选择、布置以及家用中央空调各个设计环节和消声隔振的技术要求。  这本规范的制定,将有助于提高行业内家用中央空调的设计水平,保证设计质量及使用的可靠性和安全性,也必将会提高家用中央空调协会和协会会员单位在广大用户心目中的可信度。

1 总则

1.0.1为保证家用(商用)中央空调设计的质量,使设计符合安全、适用、经济、卫生和保护环境的基本要求,制定本规范。

1.0.2本规范适用于上海地区新建与扩建的居住和公共建筑中,以舒适性要求为主,制冷量在7-80kw的家用(商用)中央空调的设计。改建工程可参照本规范执行。

1.0.3家用(商用)中央空调设计时,除执行本规范的规定外,尚应符合现行有关标准、规范的规定。

2 术语

2.0.l家用(商用)中央空调

主要用于居住和公共建筑中,以满足舒适性为目的,制冷量在7-80kw范围内,带集中冷热源的空调型式。

2.0.2空调风系统

空气经冷热、过滤等处理的送回风系统。

3 设计参数

3.1 室外气象参数

3.1.1冬季空调室外计算温度,应采用历年平均不保证一天的日平均温度。

3.1.2冬季空调室外计算相对湿度,应采用历年最冷月平均相对湿度。

3.1.3夏季空调室外计算干球温度,应采用历年平均不保证50h的干球温度。

3.1.4夏季空调室外计算湿球温度,应采用历年平均不保证50h的湿球温度。

3.1.5夏季空调室外计算日平均温度,应采用历年平均不保证5天的日平均温度。

3.1.6冬季室外平均风速,应采用累年最冷三个月各月平均风速的平均值。

3.1.7夏季室外平均风速,应采用累年最热三个月各月平均风速的平均值。

3.1.8夏季太阳辐射照度,应根据当地的地理纬度、大气透明度和大气压力,按7月21日的太阳赤纬计算确定。

3.1.9一些主要城市的室外气象参数,应按《暖通空调气象资料集》中“室外气象参数”采用。

3.2 室内空气质量

3.2.1冬季空调室内计算参数,应符合以下规定:

温度              18- 22℃

人员经常活动范围内风速      不大于0.4m/s

当无辅助热源时,冬季室外空调计算温度采用5℃。

3.2.2设计集中采暖时,冬季室内计算温度,应根据房间的用途,按下列规定采用:

1.民用建筑的主要房间,宜采用16-20℃;

2.辅助房间,不宜低于下列数值:

浴室              25℃

更衣室             23℃

托儿所、幼儿园、医护室     20℃

盥洗室、厕所          12℃

办公用室            16℃

3.2.3夏季空调室内计算参数,应符合以下规定:

 温度            24-28℃

 相对湿度不大于       65%

 人员经常活动范围内风速   不大于0.5m/s

3.2.4空调系统的新风量,应不小于20m3/(h.人)。

3.2.5室内空气中可吸入颗粒物的浓度应符合《室内空气中可吸人颗粒物卫生标准》(GB17095)的规定,不应大于0.15mg/m3。

3.2.6通风与空调系统产生的噪声,传播至住宅主要使用房间的噪声级应不大于46dB(A)。

4 空气调节

4.l 负荷计算

4.1.1在方案设计阶段,可采用冷负荷指标估算确定;在初步设计阶段,可采用分项简化计算方法进行,分项内容包括围护结构、人员、设备、灯光、食物和新风(或渗透风),其中国护结构负荷项可按经验指标估算确定;在施工图设计阶段,均应对空调房间或区域进行逐时冷负荷计算。

4.1.2逐时冷负荷计算应按国家现行《采暖通风与空气调节设计规范》的要求进行。

4.1.3空调房间或区域的夏季冷负荷,应按各项逐时冷负荷的综合最大值确定。

4.l.4空调系统冷负荷,应根据所服务房间的同时使用情况,按各空调房间或区域逐时冷负荷的综合最大值确定。

4.1.5对间歇使用空调的房间,在选择空调末端设备时,应充分考虑建筑物蓄热特性形成的负荷。

4.1.6对能单独使用空调的房间,在选择空调末端设备时,应考虑邻室不使用空调时形成的负荷。

4.1.7空调系统的冬季热负荷,可参考夏季冷负荷的数值,乘上经验系数决定。

4.2 系统设计

4.2.1属下列情况之一时,宜分别设置空调风系统:

 1.使用时间不同的房间;

 2.温度基数要求不同的房间;

 3.空气中含有异味、油烟或其他有害物质的房间;

 4.负荷特性相差较大及同时分别需供冷与供热的房间或区域。

4.2.2当房间舒适度要求较高时,宜采用各个房间可进行室内温度独立控制的空调系统。

4.2.3对于舒适度要求较高、人员较长时间逗留的场所,应采取保证新风量的措施。

4.2.4有条件时,应优先采用变频或具有节能效果的变容量控制的空调系统;变频设备产生的高次谐波强度应符合国家有关标准的规定。

4.2.5采用分体多联空调系统时,应符合下列规定:

 1.同一空调系统中,具有需同时分别供冷与供热的房间时,宜选择带有热回收的、能同时供冷与供热的空调系统;

 2.同一空调系统的规模、制冷剂管道最大长度。设备之间的最大高差、运行工况范围等,应符合设备性能的规定;

 3.选择设备时,应根据室内外设计温度、制冷剂配管长度。室内外机的标称冷热量及该设备技术参数等进行计算修正;

 4.空调系统制冷剂管道的管径、管材和管道配件应按生产厂技术要求选用,系统自控设备、制冷剂分配器等主要配件,均应由生产厂配套供应。

4.2.6采用水环热泵空调系统时,应符合以下规定:

 1.循环水水温直控制在15-35℃;

 2.循环水系统的冷却设备应通过技术经济比较,决定采用闭式或开式冷却水塔;当采用开式冷却水塔时,宜设置中间换热器,由相互隔离的闭式循环水系统与开式冷却水系统组成;

 3.辅助热源的供热量应根据建筑物冬季白天和夜间负荷特性、系统可回收内区余热等,经热平衡计算确定。

4.2.7设有排风的空调系统,宜设置新风与排风系统的热回收装置。

4.2.8空调水管路系统,宜采用闭式循环系统,并应考虑水的温度变化引起的热膨胀问题。

4.2.9冷却塔的选用和设置应符合下列要求:

 1.冷却塔的进、出口水温和循环水量,在夏季空调室外计算湿球温度条件下,应满足制冷机的要求;

 2.采用旋转式布水器的冷却塔,运行时应有保证冷却塔冷却水量的措施;

 3.冷却塔应放置在通风条件良好、远离高温和有害气体的地方,并应避免漂水和噪声对周围环境的影响;

 4.应采用阻燃型材料制作的冷却塔,符合防火要求。

4.3 空气处理与分布

4.3.l空调系统的新风和回风应经过滤处理。

4.3.2空调房间的空气分布,应根据室内温度参数、允许风速、噪声标准和空气质量等要求,结合房间特点、内部装修及设备散热等因素综合考虑。

4.3.3高大空间的空调设计应符合下列要求:

 1.空调负荷必须通过计算确定;

 2.应注意气流组织的合理性;当采用侧向送风时,回风口宜布置在送风口的同侧下方;当采用双侧送风时,两侧相向气流尚应在生活区或工作区以上搭接;侧向多股平行射流应互相搭接;

 3.应尽量减少非空调区向空调区的热转移,必要时,应在非空调区设置送排风装置。

 4.空调系统的夏季送风温差,当送风高度不大于5m时,不宜大于10℃;当送风高度大于5m时,不宜大于15℃。

4.3.4空调房间的空气循环次数不宜小于5h-1。

4.3.5送风口的出口面风速,应根据风量、射程、送风方式、风口类型、安装高度、室内允许风速和噪声标准等因素确定。

4.3.6回风口不应设在射流区或人员长时间停留的地点;采用侧送风时,宜在送风口的同侧;条件允许时,可采用集中回风或走廊回风,但走廊断面风速不宜过大。

4.3.7回风口的面吸风速度,宜按表4.3.7选用。

表4.3.7回风口的面吸风速度

回风口位置 吸风速度(m/s)

房间上部 4.0-5.0

房间下部 不靠近人经常停留的地点时 3.0-4.0

靠近人经常停留的地点时 1.5-2.0

用于走廊回风时 1.0-1.5

5 设备、管道与布置

5.1 一般规定

5.1.1设备及管道材料的选择与布置,应符合国家现行规范、标准、条例和上海市政府发布的规定。

5.1.2空调和通风系统的送、回风、排风管道的防火阀及其感温、感烟控制元件的设置应按国家现行的《建筑设计防火规范》、《高层民用建筑设计防火规范》和《民用建筑防排烟技术规程》执行。

5.2 设备、材料选择

5.2.l应优先选用符合下列条件的空调设备:

 1.采用环境污染小的能源;

 2.采用环保型制冷剂;

 3.能源利用效率高。

5.2.2风管必须采用不燃材料制作;当采用复合材料风管时,其覆面材料必须为不燃材料,内部的绝热材料应为不燃或难燃B1级,且对人体无害的材料。

5.2.3矩形风管的长边与短边之比不宜大于4:1。

5.2.4冷凝水管宜采用U—PVC管。

5.3 设备、管道布置

5.3.1家用中央空调的室外机必须放置在通风良好、安全可靠的地方,严禁采用钢支架和膨胀螺栓墙体安装。

5.3.2道路两侧建筑物安装的空调设备,其托板底面距室外地坪的高度不得低于2.5m。

5.3.3空调室外设备出风口的(冷、热)气流禁止朝向相邻方的门窗,其安装位置距相邻方门窗不得小于下列距离:

 1.制冷额定电功率≤2kw的为3m;

 2.制冷额定电功率>2kw,且≤5kw的为4m;

 3.制冷额定电功率>5kw,且≤10kw的为5m;

 4.制冷额定电功率>10kw,且≤30kw的为6m。

5.3.4空调冷凝水管应采用间接排水方式。当凝水盘位于机组内负压区时,冷凝水出水口处必须设置存水弯。

5.3.5空调冷凝6 防腐与保温水水平管道应沿水流方向保持不小于0.5%的坡度。

5.3.6外墙面上的空调冷凝水管应有组织地排放。

6.1 防腐

6.1.1所有非镀锌铁件,须在除锈后刷防锈漆二度;非保温者再刷面漆二度。

6.1.2采用木质隔热材料时,该材料应经浸渍沥青防腐。

6.2 保温

6.2.1下列设备与管道应保温:

 1.导致冷热量损失的部位;

 2.产生凝结水的部位。

6.2.2设备与管道的保温,应符合下列要求:

 1.保温层的外表面不得产生凝结水;

 2.非闭孔性保温材料的外表面应设隔汽层和保护层;

 3.管道和支吊架之间,管道穿墙、穿楼板处,应采取防止“冷桥”的措施。

6.2.3设备和管道的保温应以《设备及管道保冷设计导则》(GB/T15586)的防结露计算方法为基础,并考虑减少冷、热损失和材料的价格因素,结合工程实际应用情况确定。

6.2.4管道保温材料应采用不燃和难燃材料。

6.2.5穿越防火墙、变形缝两侧各2m范围内风管保温材料及风管型电加热器前后0.8m范围内的风管保温材料,必须采用非燃材料。

6.2.6制冷剂管道的保温,应按厂家的施工技术要求进行。

6.2.7使用温度在7-65℃的冷热水管的保温,当采用难燃型闭孔发泡橡塑时,厚度不得小于表6.2.7的规定。

表6.2.7空调冷热水管橡塑保温最小厚度表

保温厚度mm 27.5 30 32 35 38 41 44 47

室内 ≤DN20 DN25-32 DN40-50 DN70-80 DN100-150

室外 ≤DN32 DN40-50 DN70-80 DN100-125 DN150-200

注:1.仅适用于上海地区;

2.难燃型泡沫橡塑绝热制品性能应符合GB/T17794-1999国家标准,且20℃时,导热系数λ≤0.040W/( m? K),湿阻因子不小于800。

6.2.8使用温度在7-65℃的冷热水管的保温,当采用离心玻璃棉绝热管瓦时,厚度不得小于表6.2.8的规定。

表6.2.8空调冷热水管玻璃棉保温最小厚度

保温厚度mm 30 40 45 50 55 60

室内 ≤DN32 DN40-70 DN80-150 DN200-400

室外 ≤DN32 DN32-40 DN50-70 DN80-125 DN150-200

注:1.仅适用于上海地区;

2.离心玻璃棉绝热制品性能应符合GB/T13350-2000国家标准;20℃时,导热系数λ≤0.042W/( m? K),密度为64kg/m3。

7 监测与控制

7.1 一般规定

7.1.1空调系统的监测与控制,包括参数检测、参数和动力设备状态显示、自动调节和控制、工况自动转换、设备联锁与自动保护等。设计时,应根据功能要求、系统的类型和设备运行时间,经技术比较确定其具体内容。

7.1.2在满足控制功能和指标的条件下,应简化自动控制系统的控制环节。

7.1.3采用自动控制的空调系统,应做到系统和管理设计合理,防止运行调节时各并联环路压力失调,其调节机构特性应符合要求。

7.1.4自动控制方式宜采用电动式。

7.1.5设置自动控制的空调系统,应具有手动控制功能。

7.2 检测与信号显示

7.2.l空调系统有代表性的参数,应在便于观察的地点设置检测仪表。

7.2.2对于空调系统的下列参数,必要时可设置检测仪表:

 1.室内外温度;

 2.送回风温度;

 3.空气过滤器进出口的静压差;

 4.水过滤器进出口的静压差。

7.2.3空调系统敏感元件和检测元件的装设地点,应符合下列要求:

 1.室内空气温度:应装设在不受局部热源影响的、有代表性的、空气流通的地点;

 2.风管内空气温度:应由所控系统的工艺要求确定安装位置,并应符合制造厂有关的安装规定;

 3.水流、水压和水温检测元件:安装位置及与管路的连接应符合制造厂的有关规定,并应满足系统的要求。

7.2.4空调系统的通风机、水泵和电加热器等应设工作状态显示信号。

7.3 调节与控制

7.3.1空调系统的调节方式,应根据调节对象的特性参数、房间热湿负荷变化的特点以及控制参数的精度要求等进行选择。

7.3.2空调的集中控制系统应包括以下监控环节:

 1.设备的启停控制及联锁控制;

 2.设备的状态监视及故障保护;

 3.参数的控制和测量;

 4.执行器的控制;

 5.其他。

设计时,应根据系统类型、使用功能要求等,经技术经济比较确定监控内容。

7.3.3空调系统的监控应包括温度、机组的防冻保护控制以及风机运行状态、过滤器状态等环节。设计时,应根据使用要求、系统类型等项经技术经济比较确定。

7.3.4当水冷式空气冷却器采用变水量控制时,宜由室内温度调节器通过高值或低值选择器进行优先控制,并对加热器进行分程控制;冷水系统宜采用两通阀及改变水泵转速。

7.3.5全年运行的空调系统。在满足室内参数和节能要求的情况下,宜采用变结构多工况控制系统。工况转换宜采用手动方式。

7.3.6位于冬季有冻结可能地区的新风或空调机组,应对水盘管加设防冻保护控制。

7.3.7空调及通风系统宜采用独立电源回路。

7.3.8空调系统的电加热器应与送风机联锁,送风机应有延时关闭的功能,并应设无风断电保护。设置电加热器的金属风管应接地。

7.3.9自动调节间的选择,应符合下列要求:

 1.水两通阀,宜采用等百分比特性的;

 2.水三通阀,宜采用抛物线特性或线性特性的;

 3.调节阀的进出口压差,应符合制造厂的有关规定,且应对调节阀的流通能力及孔径进行选择计算

8 消声和隔振

8.1 一般规定

8.1.1空调系统的消声和隔振设计,应根据使用要求、噪声和振动的频率特性及传播方式,综合考虑确定。

8.1.2空调系统产生的噪声,传播至使用房间和周围环境的噪声级,应符合国家现行《民用建筑隔声设计规范》(GBJ118-88)和《城市区域环境噪声标准》(GB10070-88)等的有关规定。

8.1.3空调系统产生的振动,传播至使用房间和周围环境的振动级,应符合国家现行《城市区域环境振动标准》(GB10070-88)等的有关规定。

8.1.4在选择设备和进行系统设计时,应采取下列降低声源噪声的措施:

 1.应选用高效率、低噪声设备;

 2.系统风量一定时,所选风机的风压安全系数不宜过大;

 3.通风机与电动机宜采用直联传动;

 4.通风机进出口处的管道不宜急剧转弯;

 5.必要时,弯头和三通支管等处,应装设导流叶片;

 6.宜少装或不装调节阀,必要时,要求严的房间应在阀后设消声支管或消声风口。

8.1.5有消声要求的通风和空调系统,其风管内的风速,宜按表8.1.5选用。

表8.1.5风管内的风速(m/s)

室内允许噪声dB(A) 主管风速 支管风速 出风口风速(散流器后)

25-35 ≤2 ≤1.6 ≤0.8

≤40 ≤3.0 ≤2.4 ≤1.2

≤45 ≤4.0 ≤3.2 ≤1.6

≤50 ≤5.0 ≤4.0 ≤2.0

≤55 ≤6.0 ≤4.8 ≤2.4

≤60 ≤7.0 ≤5.6 ≤2.8

8.1.6空调机房的位置,不宜靠近有较高隔振和消声要求的房间;当必须靠近时,应采用必要的隔声、隔振、消声和吸声措施。

8.1.7消声处理后的风管,不宜穿过高噪声的房间;噪声高的风管,不宜穿过噪声要求低的房间。当必须穿过时,应采取隔声措施。

8.2 消声和隔声

8.2.1空调设备的声功率级,宜采用实测数值;当无实测数值时,可通过计算确定。

8.2.2通风和空调系统产生的噪声,当自然衰减不能达到允许噪声标准时,应设置消声器或采取其它消声措施。

8.2.3选择消声器时,应根据系统所需消声量、噪声源频率特性和消声器的声学性能及空气动力特性等因素,分别采用阻性、抗性或阻抗复合型消声器。

8.2.4消声器宜布置在靠近机房的气流稳定的管段上,距风机出人口、弯头。三通等要有一定距离,一般要求大于4-5倍风管直径或当量直径;当消声器直接布置在机房内时,消声器、检查门及消声后的风管,应具有良好的隔声能力;必要时,也可在总管和支管上分段设置。

8.2.5机房应根据邻近房间或建筑物的允许噪声标准,采取相应的隔声措施;当机房靠近有较高消声要求的房间,机房门窗应采用隔声门窗。

8.2.6管道穿过机房围护结构处,其孔洞四周的缝隙,应使用弹性材料填充密实。

8.2.7进、出风口与风管之间的连接,应设置适当长度的扩散管,避免突扩或突缩风管的产生。

8.3 隔振

8.3.1当通风、空调和制冷装置的振动靠自然衰减不能达到允许程度时,应设置隔振器或采取其它隔振措施。

8.3.2当设备运转小于或等于 1500r/min时,宜选用弹簧减振器;设备转速大于 1500r/min时,宜选用橡胶等弹性材料的隔振垫块或橡胶隔振器。

8.3.3选择弹簧隔振器时,应符合下列要求:

 1.设备的运转频率与弹簧隔振器垂直方向的自振频率之比,应大于或等于2.5;

 2.弹簧隔振器承受的载荷,不应超过允许工作载荷;

 3.当共振振幅较大时,宜与阻尼大的材料联合使用;

 4.弹簧隔振器与基础之间宜加一定厚度的弹性隔振垫。

8.3.4选择橡胶隔振器时,应符合下列要求:

 1.应考虑环境温度对隔振器压缩变形量的影响;

 2.计算压缩变形量宜按制造厂提供的极限压缩量的1/3-1/2采用;

 3.设备的运转频率与橡胶隔振器垂直方向的自振频率之比,应大于或等于2.5;

 4.橡胶隔振器承受的载荷,不应超过允许工作载荷;

 5.橡胶隔振器与基础之间宜加一定厚度的弹性隔振垫。

8.3.5通风机和空调机组的进出口,宜采用软管连接;制冷机的进出口,宜采用可曲橡胶接头连接。

8.3.6管道的支吊架宜采用弹性支吊架。

安装规范

一.验收安装与配置部分:

管道循环系统是否有按要求加压试漏。

室内机、室外机的吸入、吹出部位是否有妨碍、短路。

室内/外机本体是否安装牢固。

铜管布设是否美观牢固。

隔热材料是否确认包装良好。

排水管安装及排水是否良好。

与机器连接风管是否已固定。

管道连接完后,应做通水试验和满水试验,一检查排水畅通,二检查其是否漏水。

二.验收电器及安全部分:

电器部分是否有预防老鼠等动物咬坏措施。如:天花上的电线要加护套等。

电源线线径、漏电开关是否符合规定。

接地线是否已连接,连接良好、紧固。

室内外机接线柱的螺丝是否紧固。

电线连接处是否使用固定片固定。

电压是否正常,符合额定电压的90%~110%范围内。

三.验收试运转部分:

冷媒系统阀门是否全部打开。

运转前检漏时是否有泄漏(连接部位、阀体)。

室内外机的地址码是否按要求设定(多联机系列及集中控制系统时设定)。

室内机及室外机运转时检查是否有不正常的噪音。

四.竣工验收:

通风与空调工程的竣工验收,应由建设单位负责,组织施工、设计、监理等单位共同进行,合格后即应办理竣工验收手续。

(1)通风与空调工程竣工验收时,应检查竣工验收的资料,一般包括下列文件及记录:

1)图纸会审记录、设计变更通知书和竣工图。

2)主要材料、设备、成品、半成品和仪表的出厂合格证明及进场检(试)验报告。

3)隐蔽工程检查验收记录。

4)工程设备、风管系统、管道系统安装及检验记录。

5)管道试验记录。

6)设备单机试运转记录。

7)系统单机试运转记录。

8)分部(子分部)工程质量验收记录。

9)观察质量综合检民记录。

10)安全和功能检验资料的核查记录。

中央空调水系统节能技术案例分析

《中央空调维护保养实用技术》对中央空调系统作了较为详细的阐述,如系统的构成、主机及辅助设备的工作原理。并重点介绍了系统及设备的维护保养知识;中央空调水系统中的污垢、腐蚀和微生物产生的机理及控制、清洗方法;风系统的清洁维护等。《中央空调维护保养实用技术》还给出了中央空调维护保养的工程实例。随着国民经济的发展和人民生活水平的提高,中央空调已被广泛应用于工业及民用建筑中。由于从事中央空调维护管理的人员越来越多,加之专业基础不同,因此需要对中央空调系统作全面的了解。《中央空调维护保养实用技术》力求系统、简明、实用,可作为从事中央空调运行维护、管理人员的培训教材,也可供建筑环境与设备工程专业学生及有关工程技术人员参考。

中央空调水系统节能技术案例分析

 关于下文总结出中央空调水系统的各项节能率为20.5%~31%,不到三年即可回收节能投资,而且空调系统运行正常,室内温湿度满足要求。那么,我为大家提供中央空调水系统节能技术案例分析,欢迎大家阅读浏览。

 一、冷源改造技术

 对于冷源机房容量选择大,通过台数控制不能满足安全、高效运行的情况,成熟的改造技术有:制冷机组变频控制;水蓄冷;增加低容量机组;扩大空调区域(例如,某政府高校约三万平米的综合楼的中央空调系统建成后,又将该系统惠及另外三栋共约九百平米的学员楼)等。以下结合有关工程讨论冷源改造技术。

 (一)制冷机组变频改造

 1、制冷机的性能系数COP现状

 2007年就二十二栋国家政府机构办公楼和大型公共建筑通过测试或根据运行记录计算机组的性能系数COP,其机组的COP普遍低于公共建筑的强制性标准。

 案例一A办公楼安装了三台500RT的离心式冷水机组(2001年投入运行),压缩机功率340kW。

 三台机组通常只运行一台,即使在天气炎热的情况下,也仅开启两台。通过测试,制冷机组的COP在3.50~4.14之间,低于公共建筑的强制性标准,也低于设计工况的COP。

 案例二B酒店的制冷机组为工频离心式机组(2001年投入运行),共有4?400USRT的机组,负荷最大时运行两台,机组的设计能效比为5.43。根据2007年10月22~31日对制冷机组运行参数的测试,1#机组的负荷率在41%~76%之间变化,COP值在3.33~4.27之间,低于公建标准。2#机组的负荷率在38%~86%之间变化,其中,在80%~86%的负荷率为10.93%,60%~69%负荷率的概率最大(34.82%)。COP值在2.88~4.62之间,低于公建标准。

 2、制冷主机COP节能改造

 冷水机组99%以上的时间运行在部分负荷工况。通过调节导流叶片开度来调节机组输出冷量的恒速离心机,最高效率点通常在70%~80%负荷左右,负荷率80%时对应的COP为5.885,负荷率100%时对应的COP为5.33,负荷率40%时COP为5.1,随着负荷降低,单位冷量能耗增加较显著。

 变频运行的制冷机,其最高效率点可以在部分负荷下,如40%~50%负荷左右,50%负荷对应的COP为11.95。机组变频控制还能提高机组的功率因数,优化机组启动性能,避开喘振点,提高机组可靠性。

 案例三C有限公司的中央空调采用了两台650冷吨离心式制冷机组。于2005年8月20日投入使用,冷水机组用于生产车间空调,24h不间断运行,负荷稳定,标准出水温度,夏天两台运行,冬天单台运行。

 1#机于2007年9月改造为变频制冷机组。经过一年多的运行实践,无论是在大负荷运行或是小负荷运行(只要符合变频条件),都比工频机组节能。

 根据2007年10月15日10:10~10月16日10:10的测试,两台机组负荷率在60%~67%。每天节省1439 kWh,节能率为20.85%。该机组工频运行的COP为7.03,变频时COP为10.05,即机组工频运行时的COP低,机组的节能效果好。

 如果5~10月(合计6个月)按开两台制冷机组计算(考虑0.8的安全系数),11月~次年4月(合计6个月)运行一台机组,电费为0.55元 / kwh,每年可为公司节省18.2万元,实际运行表明,节省的运行费用大于18.5万元。

 3、水蓄冷改造

 利用既有的常规冷水机组,改造为水蓄冷的系统。其方法是利用消防水池、原有蓄水设施或建筑物地下室等作为蓄冷容器,增加放冷泵、充冷泵、板式换热器设备。此项改造技术具有如下优点:

 (1)设备安全运行。避免?大马拉小车?;

 (2)节能。系统高负荷运转时间大幅度增加,制冷效率可以提高5%~8%;

 (3)经济效益。投资一般3~4年可以回收。水蓄冷不仅能为用户、为社会创造节能效益,而且创造的经济效益可用于其他节能改造项目,解决节能改造资金瓶颈问题;

 (4)社会效益。平衡电网负荷,充分发挥电站的发电效益,减少电厂投资,净化环境。

 案例四D科技大楼原为常规的中央空调系统(能源合同管理项目),制冷机组为离心式制冷机组,制冷量600冷吨。2008年改造为水系统中央空调,改造项目投入运行后,通过测试,得出以下几点:

 (1)满足设计要求。低谷时段所蓄的冷量,可以满足该大楼白天3~4h空调所需的冷量。

 (2)移峰填谷。在高温条件下,水蓄冷可以移峰888kWh,减少平谷段860kWh,增加1554kWh低谷段电量;在一般温度下,水蓄冷可以移峰684kWh,减少平谷段1034kWh,增加1414kWh低谷段电量,创造了社会效益和环境效益。

 (3)经济效益:在高温条件下,每天节约电费1988元;在一般气候下,节约1885元。

 (4)空调节能。节约电量3.6万kwh(不计发电厂的节煤量),占原用电量的5.70%;电费33675.3元,占总节约费用(75万元)的4.49%。

 (5)保证并提高机组的安全可靠运行系数。

 4、增加小容量机组

 案例五E办公楼设计时为三大一小制冷机组,业主为了节省投资改为三台大机组,投入运行后,在低负荷时,机组无法启动或者喘振。通过增加两台风冷热泵机组才满足大楼的正常供冷以及设备的正常运行。

 二、空调循环泵改造技术

 (一)空调循环泵变频改造的条件

 根据空调水系统的特点,借助智能自控技术、高速可靠的网络通讯技术及先进的控制软件,对空调水泵采用基于计算机网络的'智能控制变频技术。主要应具有以下优点:实时跟踪空调负荷,减少冷冻水、冷却水用量,减少能耗与运行费用;减少空调水系统设备的振动和磨损,延长设备的使用寿命;可以实现对水泵电机的?软启动?、?软停机?,减少电流对电机的冲击;提高电机的效率,改善其运行条件;降低电机和冷却塔的噪声。

 (二)工程实例概述

 案例六某高层商用写字楼,总建筑面积3.8万m2。大楼的中央空调系统冷热源采用两台600RT离心式冷水机组供冷,冬天由一台2.5t的燃油锅炉供暖,其它辅助设备。

 由于气候状况与室内热源变化,改造前,5月、9月运行一台主机,冷却水泵两台,一台冷冻水泵,一台冷却塔(四台风机);7月、8月运行两台主机,两台冷冻泵,四台冷却泵,四台冷却塔(六台风机)。

 控制水平停留在人工操作运行台数,水系统流量仅能在50%或100%运行。针对?大流量,小温差?运行状况进行节能改造,对两台冷冻水泵、两台冷却泵变频调速控制(设计要求,为避免变频水泵空转与倒流,不允许工频泵与变频泵同时运行)。冷热源控制系统的通信协议采用过程现场总线,控制器的算法采用模糊控制,水泵的运行状态以及中央空调系统中的主要过程参数实现界面集中监控。

 (三)改造效果分析

 1、测试结果

 通过测试,可以得出以下几点:

 (1)节能。制冷系统总节电率为24.85%。冷冻水泵、冷却水泵采用了模糊变频控制,不仅节省了水泵的用电量,而且提高了机组的能效比,1#机组能效比提高了12.79%,2#机组能效比提高了10.51%。

 (2)具有经济效益。写字楼中央空调部分年用电58万元左右,按改造后年节省24.85%的费用计算,则每年至少节省14.41万元。投资3~4年完全能回收。

 (3)降低了冷凝温度,提高了机组安全运行的可靠性。

 (4)增大了供回水温差。1#机组:变频运行,冷却水温差为3.0℃,冷冻水温差3.6℃;工频运行,1#机组冷却水温差为2.4℃,冷冻水温差1.812。2#机组:变频运行,冷却水温差为2.4℃,冷冻水温差3.7℃;工频运行,2#机组冷却水温差为1.6℃,冷冻水温差2.3℃。

 (5)减少了水流量。1#机组减少了27.25%.2#机组减少了27.93%。

 (6)提高室内温度的控制精度。在变频控制下,房间温度24.2℃;工频控制下,房间温度23.9℃。

 2、考核说明

 经过近一年的运行,系统运行正常,但有两点需要说明。

 (1)实际节电率为20.5%。主要原因为:改造前,中央空调水系统的运行状况处于节约型节能,也就是说,在某些时段不满足室内空气舒适度的要求(设备停止运行);改造后,系统根据室内舒适度运行,提高了环境服务质量。

 (2)没有考虑具体工程的实际情况,冷却水泵的频率下限值调得太低。重新设定冷却水泵的频率下限值,机组工作正常。

 三、结论

 通过以上的讨论,既有中央空调水系统的节能技术有:主机变频、空调泵变频、水蓄冷、高效泵。非线性、大滞后的中央空调水系统适合采用智能控制算法。多项工程节能改造表明:中央空调水系统的各项节能率为20.5%~31%,不到三年即可回收节能投资,而且空调系统运行正常,室内温湿度满足要求。

;