1.空调水供回水差压控制?

2.中央空调水系统节能控制装置技术规范的术语

3.谁知道如何调试空调水系统

4.空调水系统的节能方式与水泵调节示例?

5.中央空调水系统的工作原理

空调水系统控制_空调水系统的运行流程

节能控制装置均为室内安装,并能在规定的条件下正常工作。 环境温度为-5℃~+40℃,而且在24h内其平均温度不超过+35℃。

在最高温度为+40℃时,相对湿度不应超过50%。在较低温度时,允许有较大的相对湿度,但无凝露。 应符合以下规定:

a) 交流电压偏差范围不超过输入额定电压的±10%,短时(0.5s以内)电压波动范围为输入额定电压的-15%~+10%;

b) 交流电源频率波动不超过额定频率的±2%;

c) 电压的相对谐波分量不超过10%。

空调水供回水差压控制?

与空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装置,

成低温低压液体,流经蒸发器,吸热,再经压缩。在蒸发器的两端接有冷冻水循环系统,制冷剂在此次吸的热量将冷冻水温度降低,使低温的水流到用户端,再经过见机盘管进行热交换,将冷风吹出。

冷水机,的水在这里相当于一种载冷剂,担当中间角色运送热量,本身的制冷在于制冷剂循环系统。

扩展资料

空气调节的主要任务:在所处自然环境下,使被调节空间的空气保持一定的温度、湿度、流动速度以及洁净度、新鲜度。

空调四要素:温度,湿度,清洁度、气流分布,是所谓空调的四大要素,对四个要素加以调节,能够控制室内环境以达到舒适的要求。

制冷时室内外温度差为3~7度(标准为5度)。无论在何种场合温度差绝对不要超过10度。

按目的分类:舒适型(满足人体对环境的要求);工艺型(满足工艺对环境的要求)。

按传热媒质分类:水系统空调;冷媒系统空调。

中央空调水系统节能控制装置技术规范的术语

空调水供回水差压控制具体内容是什么,下面中达咨询为大家解答。

当末端采用变流量系统时,空调水供回水总管之间的差压是随末端的使用情况而变化的。虽然变流量的末端系统有很多的优点,但如果不对供回水总管之间的差压进行控制,其危害也是显然的。首先,差压的波动会使整个管道系统中控制阀门的阀权度发生变化,这将破坏常规的pid控制环的稳定行,当阀权度减小到一定程度时还会导致控制阀的振荡。其次,当该差压不足时,会使远端的能量供应不足,影响使用效果;反之,差压过大又会影响到末端系统的安全。因此,这就要求自控系统能对该差压进行实时监测,并采取相应的调整手段来使差压稳定在一个合理的范围内。控制空调水供回水总管之间的差压,简单而行之有效方法就是在空调水供回水总管上加装旁通阀,控制系统根据实际的差压来调整阀门的开度。在采用换热器的系统中,这种方法能保证流经换热器二次边的流量恒定在设计值上,以兼顾换热效率并追求较低的换热温差。这种方法的缺点是水泵的成本不能随负荷的减少而下降。同时,由于旁通阀上的差压变化很大,这就导致在大的阀权度变化下,旁通阀很多时候实际是工作在开/关状态,无法达到理想的控制效果。

因此,另一种常见的办法就是采用速度可调的水泵。由自控系统根据空调水供回水总管之间的差压来调整变速泵的转速,从而达到稳定差压的目的。为了在最坏的情况下仍有足够的水流来保证水泵的安全,许多情况下在采用了调速泵后仍须安装旁通调节阀门。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:#/?source=bdzd

谁知道如何调试空调水系统

下列术语和定义适用于本标准:

3.1

中央空调水系统 water system of Central air-conditioning

中央空调系统中以水(包括盐水、乙二醇等)为介质的冷(热)量输送和分配系统,一般包括冷冻水(热水)系统和冷却水系统。

3.2

中央空调水系统节能控制装置 energy-saving control device for water system of Central air-conditioning

应用现代计算机技术、自动控制技术、变频调速技术、系统集成技术等,对中央空调水系统的运行进行优化控制以提高空调系统能源利用效率的一种自动化控制装置。

3.3

智能控制单元 intelligent control unit

安装于节能控制装置的控制柜(箱)中,实现节能控制装置与被控对象间模拟量或数字量的数据交换、且能独立控制被控对象的电路功能组合。

3.4

系统节能率 system energy-saving rate

在环境条件相近、运行工况和运行时间相同的情况下,同一空调系统应用节能控制装置所节约的能耗量与未应用节能控制装置的能耗量之比的百分数(%)。

4 技术要求

空调水系统的节能方式与水泵调节示例?

因此保证空调水系统安全、正常、高效地运转至关重要,而要做到这一点,事先应制定详细的调试方案,即调试的程序: 1、中央空调水系统调试的顺序 (1)检查各变风量空调器、新风机组和风机盘管,看托盘内是否有异物,如有,则应先把其清理干净。 (2)关闭进回水管路上的各种阀门,通过盘车看转动是否灵活,检查水泵运转情况,转向是否正确。 (3)启动补水泵或直接利用自来水供水,一般按照水流方向进行正向补水,然后根据系统充设置情况,先将分水器上控制一个系统的主阀门打开,看主阀门至走廊楼层控制阀这一段有无漏水情况,如有的话应把水放掉进行修复;然后打开楼层控制阀,看控制阀至内机盘管进回水支管上阀门段有无漏水现象,如有的话应把水放掉进行修复,再打开风机盘管进回支管上阀门,看整个楼层的管道通水情况有无渗漏,如有渗漏,应尽快作好标记,然后关闭阀门,放水重新修复后再试,直到系统不漏水为止。然后依次打开其安系统的阀门,逐个系统检查。 (4)系统灌满水无渗漏后,便可进行系统大循环水泵的流量、扬程等是否达到了设计要求,运行半小时后,打开总回水管上过滤器,取下滤网,清除脏物。 (5)水泵和主机联动,先启动循环水泵,再开启主机,达到设计温度以后,开启各个风机盘管,用手拧开风机盘管上手动放气阀,放掉积存的空气,并清理风机盘管进水管上过滤器的脏物,看风机盘管的制冷效果。 (6)在整个系统运行后,查看风机盘管托盘内的凝结水,看排水是否畅通,如有积水则应检查管路,重新调整坡度。 2、调试过程中常出现的问题及对策 调试过程中最常出现的问题主要集中在两个方面;第一个是"漏",第二个是"堵" 首先谈漏。系统漏水,既影响使用,又造成资源的浪费,漏水量大的话,系统补水的频率和流量随之增大,这样就造成水资源和电资源的浪费。解决这个问题的关键的严把安装阶段的质量并。管道与管件、管道与设备之间的连接不严都是造成漏水的主要因素;其次管材的检查和施工作业中的规范化。在螺纹的套制、填料的缠绕、垫片的制作、螺纹和法蓝螺栓的的拧紧程度上,都要严格遵守操作规程。 其次是堵。堵是影响空调使用效果最主要的因素之一,堵又分"气堵""和""脏堵"。气堵主要是由于管道积气,局部形成气囊,造成水流不畅和流量减少。造成这种原因主要是管道安装时不注意坡度,另外管道在绕梁时形成U现象,或者由于装修等其它原因造成机盘管标高提高,结果支管比走廊主管高等。解决的方法一是在每层的主管最高处设一个自动排气阀,并尽量减少绕梁现象;另外,初次使用时打开风机盘管上的手动放气阀,将盘管内积存的空气放掉。脏堵最空易发生在盘管进水支管上或者楼层主管最末端,所以,在盘管的进水支管上一般都装有过滤器。当发现风机盘管使用效果不佳时,先查看有无气堵现象,排除了以后再关掉盘管进回支管上阀门,打开过滤器,清除脏物。发生在主管末端的堵塞一般不容易查出,当空调效果不佳时,可拧开风机盘管手动放气阀,如不出水,且过滤器又无脏东西时,一般就是这种情况。这时要把楼层主阀门关掉,将主管最末一段管道疏通或换掉。造成脏堵的清洁度,将焊渣、泥土、杂物等带入了管道。因此安装前一定要清理管子内部,尤其是在进行外管网安装时更要注意。同时在管网投运前要做好系统的吹扫清洗工作,尽可能把隐患消除在投运之前。 当然,影响中央空调使用效果的因素很多,除漏堵等因素外,还有诸如主机选型过小造成制冷、制热量达不到要求,冷却塔与主机不配套,降温效果不行等,但就安装单位而言,最主要还是应该注意两点,以期达到理想的效果。

中央空调水系统的工作原理

空调系统中存在的挑战:

空调系统能量节省的条件:

公共建筑节能设计规范(GB50189-2015):

4.1.1甲类公共建筑的施工图设计阶段,必须进行热负荷计算和逐项逐时的冷负荷计算。

4.5.1集中供暖通风与空气调节系统,应进行监测与控制。建筑面积大于20000m2的公共建筑使用全空气调节系统时,宜采用直接数字控制系统。系统功能及监测控制内容应根据建筑功能、相关标准、系统类型等通过技术经济比较确定。

该规定为空调(供暖)系统根据实际负荷进行动态调整提供了条件,同时也为水泵的智能化控制提供了依据。

空调系统:

对冷水机组温差的要求:

冷水机组的冷水供回水设计温差不应小于5℃。在技术可靠和经济合理的前提下宜尽量加大冷水供回水温差。空气调节冷却水系统应满足下列基本控制要求:冷水机组运行时,冷却水最低回水温度的控制。

要求应稳定供回水温差, 并在一定条件下加大温差,同时控制冷水机组的回水温度。

旁通管:

设计一代化的空调系统,其挑战之一就是一次侧定流量和二次侧变流量的连接问题。

此问题可通过在一、二次侧间安装一根 “旁通管”解决,但是实践表明此法存在一定问题。冷冻机内大流量的改变将影响系统的运行温度,从而影响冷冻机效率。

例1:一次侧流量与二次侧流量相等,旁通管内流量: 0m3/h。

例:6000m2建筑,制冷效果0,03kW/m2,3台冷冻机 (20%+40%+40%)

Dt系统 5℃,最小流量10% (此例为20%)。

一次侧流量20%,二次侧流量10%。旁通管内流量:34.4m3/h。

例:6000m2建筑,制冷效果0.03kW/m2,3台制冷机(20% +40%+40%);Dt系统5℃,最小流量10%。

一次侧流量20%,二次侧流量30%。旁通管内流量:34.4m3/h。

例:6000m2建筑,制冷效果 0.03 kW/m2,3 台冷冻机 (20%+40%+40%) ;Dt系统5℃,最小流量10%。

耦合罐:

在一次侧和二次侧间安装耦合罐使得一次侧、二次侧之间流量不同时,仍保持温度恒定成为可能。

耦合罐可控制冷冻机的起/停,其大小决定了起停的时间间隔,小型罐提供较短的时间间隔,大型罐提供较大的时间间隔。

耦合罐的尺寸:

需要条件:

Q Pmin:一次侧最小流量 [m3/H](此流量与最小冷冻机决定);

Q Smin:二次侧最小流量 [m3/H](给予负荷侧)

冷冻机最小运行时间:最小运行时间以分钟计[min],(此时间由冷冻机型号决定)。

例:一次侧流量变化范围 68.8-344m3/h,二次侧流量变化范围34.4-344m3/h,温度不变。

例:6000m2建筑,制冷效果0.03kW/m2,3台冷冻机(20% +40%+40%);Dt 系统 5℃,最小流量10%。

Example:

Q Pmin:冷冻机制冷量:400 kW;

Dt系统:5℃;

Q:(400×0.86)/5=68.8m3/h。

Q Smin:最大流量的10%,效果:2000 kW

Dt 系统:5℃;

Q:(2000×0.86)/5=344m3/h

最小:Q (344×0.1):34.4m3/h

冷冻机最小运行时间:6分。

耦合罐容量计算:

一次侧定流量:

一次侧泵(一台冷冻机):

一次侧通过安装节流阀调整其流量:

一次侧用可调速泵调整流量:

含有多台冷冻机的不可控系统:

含有多台冷冻机的定流量系统:

全空调系统/空气盘管/混合回路控制:

全空调系统的设计条件:

公共建筑节能设计规范(GB50189-2015):

4.5.8 全空气空调系统的控制应符合下列规定:

1 应能进行风机、风阀和水阀的启停连锁控制;

2 应能按使用时间进行定时启停控制,宜对启停时间进行优化调整;

3 采用变风量系统时,风机应采用变速控制方式;

4 过渡季宜采用加大新风比的控制方式;

5 宜根据室外气象参数优化调节室内温度设定值;

6全新风系统送风末端宜采用设置人离延时关闭控制方式。

4.4.3设计变风量全空气空气调节系统时,应采用变频自动调节风机转速的方式,并应在设计文件中标明每个变风量末端装置的最小送风量。

冷却表面的控制:

通过流量控制“两通阀”调整热工况:

通过流量控制“三通阀”调整热工况:

通过温度控制“两通阀”调整热工况:

通过温度控制“三通阀”调整热工况:

处于中低负荷状态时,流量控制可能造成换热表面上下过高的温差。使用温度控制可以降低这种风险。

不同参数要求条件下的空调系统:

公共建筑节能设计规范(GB50189-2015):

4.1.7使用时间不同的空气调节区不应划分在同一个定风量全空气风系统中。温度、湿度等要求不同的空气调节区不宜划分在同一个空气调节风系统中。

该规定要求对参数条件要求差异较大的区域,实行分区控制。

空调系统:三次泵可改善系统平衡:

使用三次泵的优点:

较小的二次泵,电动机和驱动;

相对二次泵+平衡阀系统,更宜实现变频和节能设计。

降低各连接点的压差;降低运行成本;

较高的灵活性以适应系统的改造;

使每个压差传感器准确定位;

降低二次泵选型过大的风险。

二次侧泵的配置及控制:

二次泵系统设计要求:

公共建筑节能设计规范(GB50189-2015):

4.3.5集中空调冷、热水系统的设计应符合下列规定:

2 冷水水温和供回水温差要求一致且各区域管路压力损失相差不大的中小型工程,宜采用变流量一级泵系统;单台水泵功率较大时,经技术经济比较,在确保设备的适应性、控制方案和运行管理可靠的前提下,空调冷水可采用冷水机组和负荷侧均变流量的一级泵系统,且一级泵应采用调速泵。

3 系统作用半径较大、设计水流阻力较高的大型工程,空调冷水宜采用变流量二级泵系统。当各环路的设计水温一致且设计水流阻力接近时,二级泵宜集中设置;当各环路的设计水流阻力相差较大或各系统水温或温差要求不同时,宜按区域或系统分别设置二级泵,且二级泵应采用调速泵。

4 提供冷源设备集中且用户分散的区域供冷的大规模空调冷水系统,当二级泵的输送距离较远且各用户管路阻力相差较大,或者水温(温差)要求不同时,可采用多级泵系统,且二级泵等负荷侧各级泵应采用调速泵。

4.3.7采用换热器加热或冷却的二次空调水系统的循环水泵宜采用变速调节。

传感器放在哪?

智能化控制意味着:

不仅是针对泵产品,而且是针对整体系统的最优化解决方案:恒定曲线,恒定压力,比例压差,温度控制,恒定流量。节能20-50%。

相信经过以上的介绍,大家对空调水系统的节能方式与水泵调节示例也是有了一定的认识。欢迎登陆中达咨询,查询更多相关信息。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:#/?source=bdzd

典型中央空调机组主要由冷冻水循环系统、冷却水循环系统及主机三部分组成:

1、冷冻水循环系统

该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。

2、 冷却水循环部分

该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。

3、 主机

主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:

首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使冷冻水达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。